题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2752
题解:

期望,线段树。
把每个路段看成一个点,那么对于l~R的操作,就可以转化为对l~r(r=R-1)的路段的操作。
对于每个询问,我们只需要依次考虑每个路段出现在多少个区间里面。
令cnt[i]表示i号路段在cnt[i]个区间包含。
即答案为$$\frac{\sum_{i=l}^{r}v[i]*cnt[i]}{(r-l+1)*(r-l+2)/2(区间总数)}$$
那么就需要在线维护一些,使得能够快速求出上面的值。
考虑每个路段的贡献:
i号路段被(i-l+1)*(r-i+1)个区间包含,
所以贡献为:(i-l+1)*(r-i+1)*v[i],把其展开:
=(l+r)*i*v[i]-l*r*v[i]-l*v[i]+r*v[i]-i*i*v[i]+v[i]。
所以,我们只需要用线段树维护每个区间的路段的v[i]的和,i*v[i]的和,i*i*v[i]的和;

代码:

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
long long sumi[MAXN],sumi2[MAXN];
struct SGT{
int size,root;
int ls[MAXN*2],rs[MAXN*2],lazy[MAXN*2];
long long sumval[MAXN*2],sumival[MAXN*2],sumi2val[MAXN*2];
void Pushup(int u){
sumval[u]=sumval[ls[u]]+sumval[rs[u]];
sumival[u]=sumival[ls[u]]+sumival[rs[u]];
sumi2val[u]=sumi2val[ls[u]]+sumi2val[rs[u]];
}
void Add(int &u,int l,int r,int v){
if(!u) u=++size;
sumval[u]+=1ll*(r-l+1)*v;
sumival[u]+=(sumi[r]-sumi[l-1])*v;
sumi2val[u]+=(sumi2[r]-sumi2[l-1])*v;
lazy[u]+=v;
}
void Pushdown(int u,int l,int mid,int r){
Add(ls[u],l,mid,lazy[u]);
Add(rs[u],mid+1,r,lazy[u]);
lazy[u]=0;
}
void Modify(int &u,int l,int r,int al,int ar,int v){
if(!u) u=++size;
if(al<=l&&r<=ar) return Add(u,l,r,v);
int mid=(l+r)>>1;
if(lazy[u]) Pushdown(u,l,mid,r);
if(al<=mid) Modify(ls[u],l,mid,al,ar,v);
if(mid<ar) Modify(rs[u],mid+1,r,al,ar,v);
Pushup(u);
}
long long Contribution(int u,int al,int ar){
return sumival[u]*(al+ar)-sumval[u]*al*ar-sumval[u]*al+sumval[u]*ar-sumi2val[u]+sumval[u];
// return sumival[u]*(al+ar)-sumval[u]*al*ar+sumval[u]*ar-sumival[u]-sumi2val[u];
}
long long Query(int u,int l,int r,int al,int ar){
if(!u) return 0;
if(al<=l&&r<=ar) return Contribution(u,al,ar);
int mid=(l+r)>>1; long long ret=0;
if(lazy[u]) Pushdown(u,l,mid,r);
if(al<=mid) ret+=Query(ls[u],l,mid,al,ar);
if(mid<ar) ret+=Query(rs[u],mid+1,r,al,ar);
return ret;
}
}DT;
int N,M;
long long gcd(long long a,long long b){
while(b^=a^=b^=a%=b);
return a;
}
int main(){
char ch; int l,r,v;
scanf("%d%d",&N,&M);
for(int i=1;i<=N;i++)
sumi[i]=sumi[i-1]+i,sumi2[i]=sumi2[i-1]+1ll*i*i;
for(int i=1;i<=M;i++){
scanf(" %c %d %d",&ch,&l,&r); r--;
if(ch=='C') scanf("%d",&v),DT.Modify(DT.root,1,N,l,r,v);
else {
long long a=DT.Query(DT.root,1,N,l,r);
long long b=1ll*(r-l+1)*(r-l+2)/2;
long long g=gcd(a,b);
a/=g; b/=g; printf("%lld/%lld\n",a,b);
}
}
return 0;
}

  

●BZOJ 2752 [HAOI2012]高速公路(road)的更多相关文章

  1. BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )

    对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...

  2. BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit] ...

  3. bzoj 2752: [HAOI2012]高速公路(road)

    Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收 ...

  4. BZOJ 2752 [HAOI2012]高速公路(road):线段树【维护区间内子串和】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2752 题意: 有一个初始全为0的,长度为n的序列a. 有两种操作: (1)C l r v: ...

  5. BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][ ...

  6. 【线段树】BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit] ...

  7. BZOJ 2752:[HAOI2012]高速公路(road)(线段树)

    [HAOI2012]高速公路(road) Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y ...

  8. BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Descripti ...

  9. 【bzoj2752】[HAOI2012]高速公路(road) 线段树

    题目描述 Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西 ...

随机推荐

  1. 转:运行page页面时的事件执行顺序及页面的回发与否深度了解

    using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Secu ...

  2. 结合Socket实现DDoS攻击

    一.实验说明 1. 实验介绍 通过上一节实验的SYN泛洪攻击结合Socket实现DDoS攻击. 2. 开发环境 Ubuntu Linux Python 3.x版本 3. 知识点 本次实验将涉及以下知识 ...

  3. 项目Beta冲刺Day2

    项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...

  4. Webview之H5页面调用android的图库及文件管理

    h5页面打开图片管理器 一般页面在pc打开文件管理器是用 type="file"的代码,可是这在android的webview是无效的,必须为webview设定WebChromeC ...

  5. 第三篇:Python字符编码

    一 .了解字符编码的知识储备 1计算机基础知识 1.2文本编辑器存取文件的原理(nodepat++,Pycharm,word) #.打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的 ...

  6. sql 用临时表时报错 "Chinese_PRC_90_CI_AI" 和 "Chinese_PRC_CI_AS" 之间的排序规则冲突

    在用临时表关联数据库中的表做关联查询时,如果报这种情况的话,就要把临时表和关联的表的排序规则统一掉. LEFT JOIN #tsub ON #tsub.joinjarno collate Chines ...

  7. Python扩展模块——selenium的使用(定位、下载文件等)

    想全面的使用selenium可以下载<selenium 2自动化测试实战-基于Python语言>PDF的电子书看看 我使用到了简单的浏览器操作,下载文件等功能... 推荐使用firefox ...

  8. kafka安装使用和遇到的坑

    下载安装 参考:https://segmentfault.com/a/1190000012730949 ​ https://kafka.apache.org/quickstart 关闭服务 关闭zoo ...

  9. 创建以mybatis为基础的web项目(1)

    1. 新建项目,生成web.xml(生成的目录结构如下所示) 目录结构如下图 2. 导入mybatis包,数据库驱动包,log4j包(复制到webroot目录下的lib文件夹下面,并添加到构建路径) ...

  10. node.js的安装的配置

    一.Node.js 安装配置 Node.js 提供在Windows和Linux上安装 1.  Window 上安装Node.js 64 位安装包下载地址 : https://nodejs.org/di ...