1227: [SDOI2009]虔诚的墓主人

Time Limit: 5 Sec  Memory Limit: 259 MB
Submit: 1412  Solved: 664
[Submit][Status][Discuss]

Description

小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input

第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

Output

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

Sample Input

5 6
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2

Sample Output

6

HINT

图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。

所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。

注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵

首先要离散坐标    由于如果一个点正上下左右都没有其他点,那么他是肯定不会贡献答案的,所以只用记录所有点的横纵坐标,重新构成坐标系统计答案

l[]表示它同行左边的点个个数,r[]表示右边,u[]表示同列上面的点的个数,d表示同列下面的点数 c[]表示组合数

对于纵坐标相同且横坐标相邻的两点设为a,b,那么他们中间的一段无点的区间可以贡献的答案就是c[l[a]][k]*c[r[b]][k]*sigma(c[u[i]][k]*c[d[i]][k])  (a<i<b)

对于中间那一段,可以用bit动态统计。bit下标为横坐标,表示在当前列横坐标为x选择的方案数,用num统计当前列横坐标为x正下方的点数方便转移

当新扫描到一个点,这个点就会对bit进行影响,num[x]++,此位置的方案数也会变化

具体要看代码实现

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 1000050
#define mod 2147483648LL
using namespace std;
int n,m,w,k,num[N<<1],h[N<<1],l[N<<1],b[N<<1];
ll v[N<<1],c[N][12];
void update(int x,int val){
while(x<=2*w){
v[x]+=val;v[x]%=mod;
x+=x&-x;
}
}
ll query(int x){
ll res=0;
while(x){
res+=v[x];res%=mod;
x-=x&-x;
}
return res;
}
struct tree{
int x,y;
bool operator < (const tree &b)const{
return y==b.y?x<b.x:y<b.y;
}
}a[N];
void pre(){
for(int i=0;i<=w;i++)c[i][0]=c[i][i]=1;
for(int i=1;i<=w;i++)
for(int j=1;j<=min(i,k);j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
int main(){
scanf("%d%d%d",&n,&m,&w);
for(int i=1;i<=w;i++){
scanf("%d%d",&a[i].x,&a[i].y);
b[i]=a[i].x;b[i+w]=a[i].y;
}scanf("%d",&k);pre(); sort(b+1,b+1+w*2);sort(a+1,a+1+w);
int len=unique(b+1,b+1+w*2)-b-1;
for(int i=1;i<=w;i++){
int px=lower_bound(b+1,b+len+1,a[i].x)-b;
int py=lower_bound(b+1,b+len+1,a[i].y)-b;
h[py]++;l[px]++;
}
int cnt=0;ll ans=0;
for(int i=1;i<=w;i++){
int px=lower_bound(b+1,b+len+1,a[i].x)-b;
int py=lower_bound(b+1,b+len+1,a[i].y)-b;
int pre=lower_bound(b+1,b+len+1,a[i-1].x)-b;
if(i>1&&a[i].y==a[i-1].y){
cnt++;
ll t1=c[cnt][k]*c[h[py]-cnt][k];
ll t2=query(px-1)-query(pre);
ans+=t1*t2;ans%=mod;
}
else cnt=0;
num[px]++;int t=num[px];
int change=(c[t][k]*c[l[px]-t][k]-c[t-1][k]*c[l[px]-t+1][k])%mod;
update(px,change);
//printf("%lld %lld\n",change,ans);
}
if(ans<0)ans+=mod;cout<<ans;
return 0;
}

bzoj1227 组合数学+bit的更多相关文章

  1. BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MB Submit: 914 Solved: 431 [Submit][Statu ...

  2. 【bzoj1227】 SDOI2009—虔诚的墓主人

    http://www.lydsy.com/JudgeOnline/problem.php?id=1227 (题目链接) 题意 一个n*m的公墓,一个点上要么是墓地,要么是常青树,给出一个数K,并规定每 ...

  3. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  4. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  5. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  6. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  7. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  8. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  9. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

随机推荐

  1. Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  2. Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  3. 从源码角度看LinkedList一些基本操作(jdk1.7)

    介绍 LinkedList是一个双向链表,就像下图展示那样,每个节点有个指向上个元素和一个指向下个元素的指针. 接下来我会对我们经常使用的方法进行介绍,代码如下 @Test public void t ...

  4. git cherry-pick 整理

    git cherry-pick可以选择某一个分支中的一个或几个commit(s)来进行操作.例如,假设我们有个稳定版本的分支,叫v2.0,另外还有个开发版本的分支v3.0,我们不能直接把两个分支合并, ...

  5. service层报错找不到方法Invalid bound statement (not found)

    报错信息如下 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.imooc.se ...

  6. STL之queue

    描述 使用STL中的queue,完成入队.出队.获取队首.获取队尾等基本操作. 部分代码已经给出,请补充完整,提交时请勿包含已经给出的代码. int main() { queue<int> ...

  7. JAVA_SE基础——52.匿名内部类

    电信的电箱烧了,害我断了2天网,真拿命,耽误了 Java匿名内部类的总结: 没有名字的内部类.就是内部类的简化形式.一般只用一次就可以用这种形式.匿名内部类其实就是一个匿名子类对象.想要定义匿名内部类 ...

  8. Linux--初次体验

    关于Linux已经听闻很久的大名了,但是一直没有机会来使用,这次趁着放假的机会,来体验一把Linux吧. 之前使用visuabox和Ubuntu16,但是虚拟机总是不能连接互联网,在虚拟机上面无法上网 ...

  9. Python-Cpython解释器支持的进程与线程-Day9

    Cpython解释器支持的进程与线程 阅读目录 一 python并发编程之多进程 1.1 multiprocessing模块介绍 1.2 Process类的介绍 1.3 Process类的使用 1.4 ...

  10. PL/SQL Developer 导入导出操作

    一.PL/SQL Developer数据导入 Tools->Import Tables