TensorLayer官方中文文档1.7.4:API – 可视化
API - 可视化¶
TensorFlow 提供了可视化模型和激活输出等的工具 TensorBoard。
在这里,我们进一步提供一些可视化模型参数和数据的函数。
read_image(image[, path]) |
Read one image. |
read_images(img_list[, path, n_threads, ...]) |
Returns all images in list by given path and name of each image file. |
save_image(image[, image_path]) |
Save one image. |
save_images(images, size[, image_path]) |
Save mutiple images into one single image. |
draw_boxes_and_labels_to_image(image[, ...]) |
Draw bboxes and class labels on image. |
W([W, second, saveable, shape, name, fig_idx]) |
Visualize every columns of the weight matrix to a group of Greyscale img. |
CNN2d([CNN, second, saveable, name, fig_idx]) |
Display a group of RGB or Greyscale CNN masks. |
frame([I, second, saveable, name, cmap, fig_idx]) |
Display a frame(image). |
images2d([images, second, saveable, name, ...]) |
Display a group of RGB or Greyscale images. |
tsne_embedding(embeddings, reverse_dictionary) |
Visualize the embeddings by using t-SNE. |
读取与保存图片¶
读取单个图片¶
-
tensorlayer.visualize.read_image(image, path='')[源代码]¶ -
Read one image.
Parameters: images : string, file name.
path : string, path.
读取多个图片¶
-
tensorlayer.visualize.read_images(img_list, path='', n_threads=10, printable=True)[源代码]¶ -
Returns all images in list by given path and name of each image file.
Parameters: img_list : list of string, the image file names.
path : string, image folder path.
n_threads : int, number of thread to read image.
printable : bool, print infomation when reading images, default is True.
保存单个图片¶
-
tensorlayer.visualize.save_image(image, image_path='')[源代码]¶ -
Save one image.
Parameters: images : numpy array [w, h, c]
image_path : string.
保存多个图片¶
-
tensorlayer.visualize.save_images(images, size, image_path='')[源代码]¶ -
Save mutiple images into one single image.
Parameters: images : numpy array [batch, w, h, c]
size : list of two int, row and column number.
number of images should be equal or less than size[0] * size[1]
image_path : string.
Examples
>>> images = np.random.rand(64, 100, 100, 3)
>>> tl.visualize.save_images(images, [8, 8], 'temp.png')
保存目标检测图片¶
tensorlayer.visualize.draw_boxes_and_labels_to_image(image, classes=[], coords=[], scores=[], classes_list=[], is_center=True, is_rescale=True, save_name=None)[源代码]¶-
Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of
tl.prepro.Parameters: image : RGB image in numpy.array, [height, width, channel].
classes : a list of class ID (int).
coords : a list of list for coordinates.
- Should be [x, y, x2, y2] (up-left and botton-right format)
- If [x_center, y_center, w, h] (set is_center to True).
scores : a list of score (float). (Optional)
classes_list : list of string, for converting ID to string on image.
is_center : boolean, defalt is True.
If coords is [x_center, y_center, w, h], set it to True for converting [x_center, y_center, w, h] to [x, y, x2, y2] (up-left and botton-right).
If coords is [x1, x2, y1, y2], set it to False.is_rescale : boolean, defalt is True.
If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally.
If False, feed the coordinates with pixel unit format.save_name : None or string
The name of image file (i.e. image.png), if None, not to save image.
References
- OpenCV rectangle and putText.
- scikit-image.
可视化模型参数¶
可视化Weight Matrix¶
-
tensorlayer.visualize.W(W=None, second=10, saveable=True, shape=[28, 28], name='mnist', fig_idx=2396512)[源代码]¶ -
Visualize every columns of the weight matrix to a group of Greyscale img.
Parameters: W : numpy.array
The weight matrix
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
shape : a list with 2 int
The shape of feature image, MNIST is [28, 80].
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
可视化CNN 2d filter¶
tensorlayer.visualize.CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362)[源代码]¶-
Display a group of RGB or Greyscale CNN masks.
Parameters: CNN : numpy.array
The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
可视化图像¶
matplotlib显示单图¶
tensorlayer.visualize.frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836)[源代码]¶-
Display a frame(image). Make sure OpenAI Gym render() is disable before using it.
Parameters: I : numpy.array
The image
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
cmap : None or string
'gray' for greyscale, None for default, etc.
fig_idx : int
matplotlib figure index.
Examples
>>> env = gym.make("Pong-v0")
>>> observation = env.reset()
>>> tl.visualize.frame(observation)
matplotlib显示多图¶
tensorlayer.visualize.images2d(images=None, second=10, saveable=True, name='images', dtype=None, fig_idx=3119362)[源代码]¶-
Display a group of RGB or Greyscale images.
Parameters: images : numpy.array
The images.
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
dtype : None or numpy data type
The data type for displaying the images.
fig_idx : int
matplotlib figure index.
Examples
>>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
>>> tl.visualize.images2d(X_train[0:100,:,:,:], second=10, saveable=False, name='cifar10', dtype=np.uint8, fig_idx=20212)
可视化词嵌入矩阵¶
tensorlayer.visualize.tsne_embedding(embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862)[源代码]¶-
Visualize the embeddings by using t-SNE.
Parameters: embeddings : a matrix
The images.
reverse_dictionary : a dictionary
id_to_word, mapping id to unique word.
plot_only : int
The number of examples to plot, choice the most common words.
second : int
The display second(s) for the image(s), if saveable is False.
saveable : boolean
Save or plot the figure.
name : a string
A name to save the image, if saveable is True.
fig_idx : int
matplotlib figure index.
Examples
>>> see 'tutorial_word2vec_basic.py'
>>> final_embeddings = normalized_embeddings.eval()
>>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary,
... plot_only=500, second=5, saveable=False, name='tsne')
艾伯特(http://www.aibbt.com/)国内第一家人工智能门户
TensorLayer官方中文文档1.7.4:API – 可视化的更多相关文章
- TensorLayer官方中文文档1.7.4:API – 数据预处理
所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 Tens ...
- TensorLayer官方中文文档1.7.4:API – 强化学习
API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...
- Keras官方中文文档:函数式模型API
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...
- ReactNative官方中文文档0.21
整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm 百度盘下载:ReactNative0.21中文文档 来源: ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- 学习Python 新去处:Python 官方中文文档
Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ...
- django2.0 官方中文文档地址
django2.0 官方开始发布中文文档了,之前还想着一直翻译完成所有有必要的内容,想着可以省事一些了,打开以后看了一下,发现官方的中文文档还没翻译完成, 现在(2018-7-10)最新章节是是 编 ...
- mysql 新手入门 官方文档+官方中文文档附地址
点评: 官方文档地址 官方中文文档地址 sql语句扩展
- PyTorch官方中文文档:torch.optim 优化器参数
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...
随机推荐
- java使用*导包的性能
项目中切换到IDEA工具,使用Git提交代码之后在comments中被吐槽了.事情是这样的原有的导入包被IDEA优化了,譬如java.util.Set, java.util.Map, ... 会被优化 ...
- PHP基础点滴
PHP基础点滴 双冒号::的用法: 双冒号操作符即作用域限定操作符Scope Resolution Operator可以访问静态.const和类中重写的属性与方法. 伪类型(pseudo-types) ...
- 如何在关闭ssh连接的情况下,让程序继续运行?
[http://blog.csdn.net/smstong/article/details/5872309] 对Unix,Linux类服务器维护经常是通过ssh完成的,而有些操作比较费时,如更新程序等 ...
- linux、windows系统间传输文件
日常工作中经常涉及到系统间的文件传输,下面就简单说一下常用的方法 linux--windows 工具:winscp.SecureCRT.Zmodem(sz, rz) linux--l ...
- Java经典编程题50道之五
利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示,60-89分之间的用B表示,60分以下的用C表示. public class Example05 { public static ...
- Java经典编程题50道之三
打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数",因为153=1的三次 ...
- SpringMvc解决Restful中文乱码问题
中文乱码问题解决方式: <!-- 解决中文乱码问题 --> <filter> <filter-name>CharacterEncodingFilter</fi ...
- JSTL的相关使用
index.jsp <%@ page language="java" import="java.util.*" pageEncoding="UT ...
- yum源配置的三种方法
(一)yum源概述 yum需要一个yum库,也就是yum源.默认情况下,CentOS就有一个yum源.在/etc/yum.repos.d/目录下有一些默认的配置文件(可以将这些文件移到/opt下,或者 ...
- Luogu P1747 好奇怪的游戏
题目背景 <爱与愁的故事第三弹·shopping>娱乐章. 调调口味来道水题. 题目描述 爱与愁大神坐在公交车上无聊,于是玩起了手机.一款奇怪的游戏进入了爱与愁大神的眼帘:***(游戏名被 ...