OO第一单元总结——多项式求导
第一次作业分析
1.程序结构分析
类图:

好吧,这一次基本上完全是在面向过程编程,没有看出来任何的面向对象的特性。
复杂度:

可以看到模块间的相互耦合度很高,PolyDerive方法的非结构化程度也不够理想,是非常不合格的面向对象程序。
2.正则表达式
从带符号整数到项到多项式一步步地写出对应的正则表达式:
符号 String signStrPat = "(?:\\+|-)";
带符号整数 String intStrPat = "(?:\\+|-)?\\d+";
项 String termStrPat = "(?:(?:(?:(?:(?:\\+|-)?\\d+\\s*\\*)|\\+|-)?"
+ "\\s*x\\s*(?:\\^\\s*(?:\\+|-)?\\d+)?)|(?:(?:\\+|-)?\\d+))";
多项式 String polyStrPat = "^\\s*" + signStrPat + "?\\s*" + termStrPat
+ "(?:\\s*" + signStrPat + "\\s*" + termStrPat + "\\s*)*+$";
3.总结
虽然程序没有bug,但是第一次作业只能说是java编程,不能叫面向对象程序设计,写的很烂,不过熟悉了java基本语法和java正则表达式。
第二次作业分析
1.程序结构分析
类图:

这一次采用了面向对象的思想,定义了因子、项和多项式类,但是不够熟练,在架构上存在不小的问题:
BigInt类其实完全没有必要,Index类和Term类功能严重重叠,求导操作全部集中在PolyDerive等等等等。
这些都是在架构上很丑陋的一些设计,也导致了无法进行三角函数的化简,以及下一次作业需要再次重构。
复杂度:

部分模块的耦合度还是比较高,勉强合格吧。
2.正则表达式
同样采用层次化的写法,而且将每一个类对应的正则表达式用public static final修饰写在了每个类的内部:
带符号整数 public static final String INTPAT = "(?:\\+|-)?\\d+";
因子 public static final String FACPAT = "(?:(?:(?:x|(?:(?:sin|cos)\\s*\\(\\s*x\\s*\\)))"
+ "(?:\\s*\\^\\s*" + BigInt.INTPAT + ")?)|" + BigInt.INTPAT + ")";
项 public static final String TERMPAT = "(?:(?:\\+|-)?\\s*" + Factor.FACPAT
+ "(?:\\s*\\*\\s*" + Factor.FACPAT + ")*+)";
多项式 public static final String POLYPAT = "(?:\\+|-)?\\s*" + Term.TERMPAT
+ "(\\s*[\\+-]\\s*" + Term.TERMPAT + ")*+";
3.总结
没有bug,但是依旧丑陋。
第三次作业分析
1.程序结构分析
类图:

这次作业的因子有常数、幂函数、三角函数、表达式因子,我的思路就是构造这些因子的类继承总的因子类,并且构造项和表达式类,然后用递归下降分析法处理输入,构造相应的对象。
化简(simplify方法)时调用类内similar方法和equals方法进行判断。
复杂度:


由于sin和cos三角函数因子内部有因子,所以耦合度过高。另外,similar方法和重写的equals方法因为要遍历比较所以复杂度过高。这也导致了公测时三个样例运行时间过长。
2.输入处理
由于引入了表达式因子,所以没有想出来怎么用java正则表达式来对整体表达式进行识别。
但是联系到编译原理课上学过的词法分析和语法分析,可以很自然地用自动机和递归下降分析法来处理输入。
但是这种写法最终导致程序的复杂度很高,而且遇到深层次的括号嵌套时会构造很多冗余的、没有必要的对象(例如"((((x))))",会调用五次表达式分析,构造五个表达式、项、因子)。
3.总结
这次作业公测出现了三个测试样例运行时间过长而判错,由于自己测试时未进行多重括号嵌套的测试,事先没有发现这个问题。
收获与反思
经过这三次作业已经基本理解了面向对象的思想,但是在一些细节上还不够熟练,需要多加雕琢。
在架构上一定要多花心思,在测试上一定要下功夫。

OO第一单元总结——多项式求导的更多相关文章
- OO第一单元总结-多项式求导
OO第一单元总结-多项式求导 一.第一.第二次作业总结 因为前两次作业设计复杂度差别不大,因而放在这里统一总结. 基于度量分析程序结构: 前两次作业确实存在缺乏可拓展设计的构想,基本还是面向过程的思维 ...
- 2020 OO 第一单元总结 表达式求导
title: BUAA-OO 第一单元总结 date: 2020-03-19 20:53:41 tags: OO categories: 学习 OO第一单元通过三次递进式的作业让我们实现表达式求导,在 ...
- 2019年北航OO第一单元(表达式求导任务)总结
2019面向对象课设第一单元总结 一.三次作业总结 1. 第一次作业 1.1 需求分析 第一次作业的需求是完成简单多项式导函数的求解,表达式中每一项均为简单的常数乘以幂函数形式,优化目标为最短输出.为 ...
- 2019 OO第一单元总结(表达式求导)
一. 基于度量的程序结构分析 1. 第一次作业 这次作业是我上手的第一个java程序,使用了4个类来实现功能.多项式采用两个arraylist来存,系数和幂指数一一对应. private ArrayL ...
- OO第一单元作业——魔幻求导
简介 本单元作业分为三次 第一次作业:需要完成的任务为简单多项式导函数的求解. 第二次作业:需要完成的任务为包含简单幂函数和简单正余弦函数的导函数的求解. 第三次作业:需要完成的任务为包含简单幂函数和 ...
- OO第一单元总结——表达式求导
第一次作业 (1) UML结构图 (2)结构分析 Polynomial 类是对输入的字符串进行预处理,其中包括判断格式是否合法,运算符简化,分割成项等方法. Polynomial处理后得到的每一个项的 ...
- OO第一单元(求导)单元总结
OO第一单元(求导)单元总结 这是我们oo课程的第一个单元,也是意在让我们接触了解掌握oo思想的一个单元,这个单元的作业以求导为主题,从一开始的加减多项式求导再到最后的嵌套多项式求导,难度逐渐提高,编 ...
- OO第一单元作业总结——表达式求导
OO第一单元作业总结 第一次作业 基于度量分析代码结构 基本算法 第一次作业是简单多项式导函数求解,不需要对输入数据的合法性进行判定, 基本思想是用 (coeff, expo)表示二元组 coeff* ...
- OO_多项式求导_单元总结
概述: 面向对象第一单元的作业是三次难度依次递增的多项式求导.第一次作业是仅包含带符号整数和幂函数的多项式求导,例如:-1+xˆ233-xˆ06:第二次是在前面的基础上增加了三角函数的求导,例如:-1 ...
随机推荐
- java常用API的总结(1)
本篇是对于这一段时间以来接触到的常用api的一些总结,便于以后的查阅.... 一.正则表达式 对于正则表达式,我的感觉就是当我们在做某些题的时候正则表达式会省去我们很多的时间,并且正则表达式的使用格式 ...
- javaScript设计模式之面向对象编程(object-oriented programming,OOP)(二)
接上一篇 面向对象编程的理解? 答:面向对象编程,就是将你的需求抽象成一个对象,然后针对这个对象分析其特征(属性)与动作(方法).这个对象我们称之为类.面向对象编程思想其中一个特点就是封装,就是把你需 ...
- springboot~ObjectMapper~dto到entity的自动赋值
实体与Dto自动赋值 在开发的过程中,实体之间相互赋值是很正常的事,但是我们一般的方法都通过set和get方法来进行的,如果要赋值的字段少那还行,但是需要赋值的字段超过10个,那就是个灾难,你会看到整 ...
- Python编程从入门到实践笔记——函数
Python编程从入门到实践笔记——函数 #coding=gbk #Python编程从入门到实践笔记——函数 #8.1定义函数 def 函数名(形参): # [缩进]注释+函数体 #1.向函数传递信息 ...
- TensorFlow tutorial
代码示例来自https://github.com/aymericdamien/TensorFlow-Examples tensorflow先定义运算图,在run的时候才会进行真正的运算. run之前需 ...
- 卷积神经网络CNN
卷积神经网络,在图像识别和自然语言处理中有很大的作用,讲cnn的中文博客也不少,但是个人感觉说的脉络清晰清晰易懂的不多. 无意中看到这篇博客,写的很好,图文并茂.建议英文好的直接去看原文.英文不好的就 ...
- .net core +codefirst(.net core 基础入门,适合这方面的小白阅读,本文使用mysql或mssql)
设置为model所在的那一层 前言 .net core mvc和 .net mvc开发很相似,比如 视图-模型-控制器结构.所以.net mvc开发员很容易入手.net core mvc .但是两个又 ...
- [转]Blue Prism Login Agent 使用指导手册
本文转自:https://cloud.tencent.com/developer/news/83035 咳!咳!咳! 第一篇RPA技术文,还是贼拉鸡冻.各位大侠要多多支持啊 1.Login Agent ...
- python内存回收的问题
python实际上,对于占用很大内存的对象,并不会马上释放. 举例,a=range(10000*10000),会发现内存飙升一个多G,del a 或者a=[]都不能将内存降下来.. del 可以删除多 ...
- 在chrome 怎么通过ajax请求加载本地文件
在chrome下面用Jquery 的load方法加载本地的html文件时会报错 我百度了一下是因为 谷歌浏览器内核为了安全机制,不允许这样方式访问其他页面,但是可以通过加 --enable-file- ...