Description

题库链接

给你指定一个数 \(f\) ,并给你 \(T\) 组游戏,每组有 \(n\) 堆石子, \(A,B\) 两人轮流对石子进行操作,每次你可以选择其中任意一堆数量不小于 \(f\) 的石子,平均分为 \(m\) 份(即保证最大的一堆和最小的一堆中石子数量之差不超过 \(1\) )。不能操作者负。

问先手是否有必胜策略。

\(T<100,N<100,F<100000,每堆石子数量<100000\)

Solution

首先对于组合游戏,该游戏的 \(sg\) 函数是各个组分 \(sg\) 函数的 \(nim\) 和。

其次 \(sg(x)=mex\{sg(y)|y是x的后继状态\}\) 。由这两个性质我们可以来求初始状态为 \(n\) 态还是 \(p\) 态。

设法来求 \(sg(x)\) 。

我们可以枚举分的堆数 \(i\) 。

为了使数量尽量平均,我们应该使分出来每堆的石子数量尽可能等于 \(\lfloor\frac{x}{i}\rfloor\) ,如果每一堆分到\(\lfloor\frac{x}{i}\rfloor\) 个石子,那么最后会多出 \(x\mod i\) 个石子。

考虑把这些多出来的石子分别放在分出来的石子堆中,那么有 \(x\mod i\) 堆会分到新的石子。

经过简单的计算,我们可以发现最后有 \(x\mod i\) 堆分到了 \(\lfloor\frac{x}{i}\rfloor+1\) 个石子,有 $ i-(x\mod i)$ 堆分到了 \(\lfloor\frac{x}{i}\rfloor\) 。

由数论分块的思想,对于相同的块内,后继状态 \(y\) 最多只有两种,由于相同的数异或可以抵消,我们可以通过判断 \(x\mod i\) 和 \(i-(x\mod i)\) 的奇偶性来缩小运算规模。

Code

//It is made by Awson on 2018.3.7
#include <bits/stdc++.h>
using namespace std;
const int N = 100000; int sg[N+5], mex[N+5], t, F, n, x; int f(int x) {
if (sg[x] != -1) return sg[x];
if (x < F) return sg[x] = 0;
sg[x] = 0;
for (int i = 2; i <= x; i = x/(x/i)+1) {
int tmp = 0;
if ((i-x%i)&1) tmp ^= f(x/i); if ((x%i)&1) tmp ^= f(x/i+1);
mex[tmp] = x;
if (i < x && (x/i == x/(i+1))) {
++i, tmp = 0;
if ((i-x%i)&1) tmp ^= f(x/i); if ((x%i)&1) tmp ^= f(x/i+1);
mex[tmp] = x;
}
}
while (mex[sg[x]] == x) ++sg[x];
return sg[x];
}
void work() {
memset(sg, -1, sizeof(sg));
scanf("%d%d", &t, &F); --t;
while (t--) {
scanf("%d", &n); int ans = 0; while (n--) scanf("%d", &x), ans ^= f(x); printf("%d ", (ans != 0));
}
scanf("%d", &n); int ans = 0; while (n--) scanf("%d", &x), ans ^= f(x); printf("%d\n", (ans != 0));
}
int main() {
work(); return 0;
}

[HNOI 2014]江南乐的更多相关文章

  1. BZOJ-3576 江南乐 博弈+优化

    fye测试原题,高一全跪,高二学长除了CA爷似乎都A辣(逃) 3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MB Submit: 1 ...

  2. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  3. 【BZOJ3576】江南乐(博弈论)

    [BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...

  4. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  5. HNOI 2014

    D1T1:画框 frame 题意:给你两个n阶正整数方阵,请你求最大的\( \sum_{i = 1}^{n} A_{i, p_i}\times \sum_{i = 1}^{n} B_{i, p_i}  ...

  6. 【LOJ】#2210. 「HNOI2014」江南乐

    LOJ#2210. 「HNOI2014」江南乐 感觉是要推sg函数 发现\(\lfloor \frac{N}{i}\rfloor\)只有\(O(\sqrt{N})\)种取值 考虑把这些取值都拿出来,能 ...

  7. HNOI 2014 米特运输(图论)

    HNOI 2014 米特运输 题目大意 给一棵树,每个点有自己的权值,要求更改一些点的权值,使得整棵树满足两个条件: 同一个父亲的所有子节点权值相同 父节点的取值为所有子节点的和 答案输出最少要更改的 ...

  8. 「HNOI 2014」 江南乐

    \(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...

  9. 图论(KM算法,脑洞题):HNOI 2014 画框(frame)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABPoAAANFCAIAAABtIwXVAAAgAElEQVR4nOydeVxTV/r/n9ertaJEC4

随机推荐

  1. 实验四 Android程序设计 实验报告

    实验四 Android程序设计 实验报告 目录 代码托管地址 Android程序设计-1 Android程序设计-2 Android程序设计-3 Android程序设计-4 Android程序设计-5 ...

  2. 项目Alpha冲刺Day8

    一.会议照片 二.项目进展 1.今日安排 前端界面框架基本完成,剩下侧边栏与权限相关部分未完成.前端路由异常拦截完成.项目结构与开发流程规定完成.后台开发规定小变更. 2.问题困难 组件的拆分与否和组 ...

  3. Alpha冲刺第十一天

    Alpha冲刺第十一天 站立式会议 项目进展 项目进入尾声,主要测设工作完成过半,项目总结也开始进行. 问题困难 项目的困难现阶段主要是测试过程中存在一些"盲点"很难发现或者发现后 ...

  4. 201621123057 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 答: ...

  5. 《招一个靠谱的移动开发》iOS面试题及详解(下篇)

    iOS面试知识点 现在进入本篇的正题.本篇的面试题是我认为比较好的iOS开发基础知识点,希望大家看过这后在理解的基础上掌握而不是死记硬背.死记硬背很快也会忘记的. 1 iOS基础 1.1 父类实现深拷 ...

  6. iOS开发之Objective-C与JavaScript的交互

    UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...

  7. ajax的四种type类型

    1.GET请求会向数据库发索取数据的请求,从而来获取信息,该请求就像数据库的select操作一样,只是用来查询一下数据,不会修改.增加数据,不会影响资源的内容,即该请求不会产生副作用.无论进行多少次操 ...

  8. 【微软大法好】VS Tools for AI全攻略(2)

    接着上文,我们来讨论如何使用Azure资源来训练我们的tensorflow项目.Azure云我个人用得很多,主要是因为微软爸爸批了150刀每月的额度,我可以愉快地玩耍. 那么针对Azure,有成套的两 ...

  9. EasyUI 中datagrid 分页。

    注释:datagrid分页搞了好几天才完全搞好,网上没完全的资料.明天晚上贴代码. 睡觉.

  10. Javascript 装饰器极速指南

    pablo.png Decorators 是ES7中添加的JavaScript新特性.熟悉Typescript的同学应该更早的接触到这个特性,TypeScript早些时候已经支持Decorators的 ...