[HNOI 2014]江南乐
Description
给你指定一个数 \(f\) ,并给你 \(T\) 组游戏,每组有 \(n\) 堆石子, \(A,B\) 两人轮流对石子进行操作,每次你可以选择其中任意一堆数量不小于 \(f\) 的石子,平均分为 \(m\) 份(即保证最大的一堆和最小的一堆中石子数量之差不超过 \(1\) )。不能操作者负。
问先手是否有必胜策略。
\(T<100,N<100,F<100000,每堆石子数量<100000\)
Solution
首先对于组合游戏,该游戏的 \(sg\) 函数是各个组分 \(sg\) 函数的 \(nim\) 和。
其次 \(sg(x)=mex\{sg(y)|y是x的后继状态\}\) 。由这两个性质我们可以来求初始状态为 \(n\) 态还是 \(p\) 态。
设法来求 \(sg(x)\) 。
我们可以枚举分的堆数 \(i\) 。
为了使数量尽量平均,我们应该使分出来每堆的石子数量尽可能等于 \(\lfloor\frac{x}{i}\rfloor\) ,如果每一堆分到\(\lfloor\frac{x}{i}\rfloor\) 个石子,那么最后会多出 \(x\mod i\) 个石子。
考虑把这些多出来的石子分别放在分出来的石子堆中,那么有 \(x\mod i\) 堆会分到新的石子。
经过简单的计算,我们可以发现最后有 \(x\mod i\) 堆分到了 \(\lfloor\frac{x}{i}\rfloor+1\) 个石子,有 $ i-(x\mod i)$ 堆分到了 \(\lfloor\frac{x}{i}\rfloor\) 。
由数论分块的思想,对于相同的块内,后继状态 \(y\) 最多只有两种,由于相同的数异或可以抵消,我们可以通过判断 \(x\mod i\) 和 \(i-(x\mod i)\) 的奇偶性来缩小运算规模。
Code
//It is made by Awson on 2018.3.7
#include <bits/stdc++.h>
using namespace std;
const int N = 100000;
int sg[N+5], mex[N+5], t, F, n, x;
int f(int x) {
if (sg[x] != -1) return sg[x];
if (x < F) return sg[x] = 0;
sg[x] = 0;
for (int i = 2; i <= x; i = x/(x/i)+1) {
int tmp = 0;
if ((i-x%i)&1) tmp ^= f(x/i); if ((x%i)&1) tmp ^= f(x/i+1);
mex[tmp] = x;
if (i < x && (x/i == x/(i+1))) {
++i, tmp = 0;
if ((i-x%i)&1) tmp ^= f(x/i); if ((x%i)&1) tmp ^= f(x/i+1);
mex[tmp] = x;
}
}
while (mex[sg[x]] == x) ++sg[x];
return sg[x];
}
void work() {
memset(sg, -1, sizeof(sg));
scanf("%d%d", &t, &F); --t;
while (t--) {
scanf("%d", &n); int ans = 0; while (n--) scanf("%d", &x), ans ^= f(x); printf("%d ", (ans != 0));
}
scanf("%d", &n); int ans = 0; while (n--) scanf("%d", &x), ans ^= f(x); printf("%d\n", (ans != 0));
}
int main() {
work(); return 0;
}
[HNOI 2014]江南乐的更多相关文章
- BZOJ-3576 江南乐 博弈+优化
fye测试原题,高一全跪,高二学长除了CA爷似乎都A辣(逃) 3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MB Submit: 1 ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- HNOI 2014
D1T1:画框 frame 题意:给你两个n阶正整数方阵,请你求最大的\( \sum_{i = 1}^{n} A_{i, p_i}\times \sum_{i = 1}^{n} B_{i, p_i} ...
- 【LOJ】#2210. 「HNOI2014」江南乐
LOJ#2210. 「HNOI2014」江南乐 感觉是要推sg函数 发现\(\lfloor \frac{N}{i}\rfloor\)只有\(O(\sqrt{N})\)种取值 考虑把这些取值都拿出来,能 ...
- HNOI 2014 米特运输(图论)
HNOI 2014 米特运输 题目大意 给一棵树,每个点有自己的权值,要求更改一些点的权值,使得整棵树满足两个条件: 同一个父亲的所有子节点权值相同 父节点的取值为所有子节点的和 答案输出最少要更改的 ...
- 「HNOI 2014」 江南乐
\(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...
- 图论(KM算法,脑洞题):HNOI 2014 画框(frame)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABPoAAANFCAIAAABtIwXVAAAgAElEQVR4nOydeVxTV/r/n9ertaJEC4
随机推荐
- maven的使用(基础1)
这是我第一次写博客,这个想法源于我的师傅对我的建议,一是与大家一起进步,二是让自己养成总结的好习惯. "如果你步入的maven的世界,你便打开了Java的另一扇大门". 这篇文章是 ...
- JavaScript判断类型
1.typeof操作符,返回值为字符串,用来判断一个值是哪种基本类型 "undefined"-Undefined "boolean"-Boolean " ...
- Flask 扩展 缓存
如果同一个请求会被多次调用,每次调用都会消耗很多资源,并且每次返回的内容都相同,就该使用缓存了 自定义缓存装饰器 在使用Flask-Cache扩展实现缓存功能之前,我们先来自己写个视图缓存装饰器,方便 ...
- JAVA_SE基础——38.单例设计模式
本文继续介绍23种设计模式系列之单例模式. 我们在javaSE的基础学习中,会讲到:单例设计模式.模板设计模式.装饰者设计模式.观察者设计模式.工厂设计模式 我以后随着水平的提高,我会专门开个分类写设 ...
- JAVA_SE基础——29.构造函数
黑马程序员入学Blog... jvm创建Java对象时候需要调用构造器,默认是不带参数的.在构造器中,你可以让jvm帮你初始化一些参数或者执行一系列的动作. 它是对象创建中执行的函数,及第一个被执行的 ...
- LightningChart最新版 v.8.3 全新发布,新功能使用教程。
LightningChart最新版v.8.3全新发布,主要介绍以下五个新功能及使用教程. 1. 网格模型,三角鼠标追踪 Tracing MeshModels with mouse. Traced ...
- CentOS 7 Redis安装配置
1.获取Redis压缩包: wget http:.tar.gz 2.解压测试: mv 到 /usr/local/ tar .tar cd redis 3.使用make测试编译: make 这里可能会出 ...
- python 之 列表list && 元组tuple
目录: 列表 列表基本操作 列表的操作符 列表的函数和方法 元组 介绍: 列表是一种可变的有序集合,可以进行访问.添加和删除操作. 元组是一种不可变的有序集合,可以访问. 1.列表的基本操作 创建列表 ...
- python 单例模式的四种创建方式
单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...
- 云计算(2)it 是什么
2015年,全世界在it上面的花费达到3亿8千亿美金之多. 云数据中心:核心基础架构,云计算的物理载体,提供数据处理.存储和高性能计算支撑,包括服务器.存储.冷却.机房空间和能耗管理等. 超大规模的云 ...