题目描述

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

输入输出格式

输入格式:

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y (-2*10^9<=a,b,x,y<=2*10^9)

输出格式:

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

输入输出样例

输入样例#1:

3
2 1 3 3
1 1 0 1
1 0 -2 3
输出样例#1:

Y
N
Y

说明

样例解释:

第一组:(2,1)+(1,2)=(3,3)

第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)

Solution:

  首先,我们注意到题目中的向量实际只有4种操作:$$(a,b),(b,a),(a,-b),(b,-a)$$

  于是由题意得方程组:

  $$k(a,b)+q(b,a)+w(a,-b)+c(b,-a)=(x,y) --> (k+w)a+(q+c)b=x,(k-w)b+(q-c)a=y$$

  由裴蜀定理可得:$$a*x+b*y=c$$

  xy有整数解的充要条件是$$gcd(a,b)|c$$

  证明:令$$a=p*gcd(a,b),b=q*gcd(a,b)$$

  则原式=$$(p*x+q*y)*gcd(a,b)=c$$

  显然因为gcd(a,b)为整数,而要使xy为整数,则gcd(a,b)|c

  我们回到开始的方程组$$(k+w)a+(q+c)b=x,(k-w)b+(q-c)a=y$$

  由裴蜀定理易得:(k+w),(q+c),(k-w),(q-c)均为整数的充要条件是$$gcd(a,b)|x且gcd(a,b)|y$$

  但是注意到(k+w),(k-w)有整数解不一定k和w有整数解(q+c)和(q-c)是同理的)。此时不妨设$$(k+w)=f,(k-w)=g$$

  则$$k=(f+g)/2,w=(f-g)/2$$

  因为$$2|(f+g)且2|(f-g)$$

  显然要使$k$和$w$均为整数则$f$和$g$均为偶数或均为奇数($(q+c)$和$(q-c)$同理)。

  于是我们考虑这四种情况:

  1、当$(k+w),(k-w),(q+c),(q-c)$均为偶数时,$(k+w)a+(q+c)b=x$ 提公因数$2$结合 $gcd(a,b)|x  -->gcd(a,b)*2|x$ 同理 $gcd(a,b)*2|y$

  2、当$(k+w),(k-w)$为偶数,$(q+c),(q-c)$为奇数时,$(k+w)a+(q+c)b=x$先左右两边同加$b$,再提公因数$2$结合 $gcd(a,b)|x-->gcd(a,b)*2|x+b$ 同理$gcd(a,b)*2|y+a$

  3、当$(k+w),(k-w)$为奇数,$(q+c),(q-c)$为偶数时,$(k+w)a+(q+c)b=x$先左右两边同加$a$,再提公因数$2$结合$gcd(a,b)|x-->gcd(a,b)*2|x+a$ 同理$gcd(a,b)*2|y+b$

  4、当$(k+w),(k-w),(q+c),(q-c)$均为奇数时,$(k+w)a+(q+c)b=x$先左右两边同加$a+b$,再提公因数$2$结合$gcd(a,b)|x-->gcd(a,b)*2|x+a+b$同理 $gcd(a,b)*2|y+a+b$

  只要满足上述的任意一种情况,则说明本题$k,w,q,c$有整数解,说明可行,否则说明无解。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
ll t,a,b,x,y,k;
il int gi()
{
ll a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
il bool check(ll x,ll y){return x%k==&&y%k==;}
int main()
{
t=gi();
while(t--){
a=gi(),b=gi(),x=gi(),y=gi();
k=gcd(a,b)*;
if(check(x,y)||check(x+a,y+b)||check(x+b,y+a)||check(x+a+b,y+a+b))printf("YE5\n");
else printf("N0\n");
}
return ;
}

P2520 [HAOI2011]向量的更多相关文章

  1. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

  2. 【BZOJ2299】[HAOI2011]向量(数论)

    [BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...

  3. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  4. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  5. 【[HAOI2011]向量】

    靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...

  6. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  7. 牛客19985 HAOI2011向量(裴属定理,gcd)

    https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...

  8. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  9. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

随机推荐

  1. 4c语言的第0次作业

    1.你认为大学的学习生活.同学关系.师生关系应该是怎样? 我认为大学的学习生活应该是充实有意义的,有对学习的激情又有与伙伴相知的愉悦. 我认为同学关系应该是互相尊重,互相学习,坦诚相待. 我认为师生关 ...

  2. Beta冲刺Day7

    项目进展 李明皇 今天解决的进度 部分数据传递和使用逻辑测试 林翔 今天解决的进度 服务器端查看个人发布的action,修改已发布消息状态的action,仍在尝试使用第三方云存储功能保存图片 孙敏铭 ...

  3. JAVA中if多分支和switch的优劣性。

    Switch多分支语句switch语句是多分支选择语句.常用来根据表达式的值选择要执行的语句.例如,在某程序中,要求将输入的或是获取的用0-6代表的星期,转换为用中文表示的星期.该需求通过伪代码描述的 ...

  4. 过滤器Filter与监听器Listener

    过滤器Filter 过滤器也是一种servlet   它也可以对用户的请求进行处理  , 但是他所做的处理,只是一些轻量级的处理.Fileter就好像jsp页面与servlet之间的一道关卡,如果这个 ...

  5. 浅谈 ThreadLocal

    有时,你希望将每个线程数据(如用户ID)与线程关联起来.尽管可以使用局部变量来完成此任务,但只能在本地变量存在时才这样做.也可以使用一个实例属性来保存这些数据,但是这样就必须处理线程同步问题.幸运的是 ...

  6. JAVA_SE基础——50.接口关系下的多态

    接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口  变量  = ...

  7. Python 列表嵌套多种实现方式

    #coding=utf-8 list=[] for i in range(1,101): list.append(i) # print(list) tempList=[] newList=[] whi ...

  8. MySQL ID排序乱了的解决办法

    可能在整理表中数据的时候删除了某一行数据,导致ID空缺,下面是我用到的解决办法:(请先备份,MySQL备份方法见 MySQL->MySQL备份) 使用ALTER DROP删除原有的ID字段: A ...

  9. AngularJS1.X学习笔记10-自定义指令(下)

    继续继续,学完这个部分就去吃饭.引用自由男人的话作为本文的开始:“默认情况下,链接函数被传入了控制器的作用域,而该控制器管理着的视图包含了指令所应用到的元素”.果然像是绕口令,还是看看你的例子比较好. ...

  10. ( 转 ) WebApiTestClient 的使用

    注意点:需要修改api路由规则,加上action: "api/{controller}/{action}/{id}" 1.如何引入组件 首先,我们需要定义一个API项目 然后通过N ...