AVL Tree 操作
1.AVL树是带有平衡条件的二叉查找树, 一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树。
2.AVL树的删除要比插入复杂。如果删除相对较少,那么用懒惰删除的方法是最好的策略。
3.AVL树的插入操作:
#ifndef _AvlTree_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
typedef ElementType int;
AvlTree Insert(ElmentType X,AvlTree T);
AvlTree MakeEmpty(AvlTree T);
Position Find(ElementType X,AvlTree T);
Position FindMax(AvlTree T);
Position FindMin(AvlTree T);
AvlTree Delete(ElementType X,AvlTree T);
ElementType Retrieve(Position P);
#endif;
struct AvlNode //定义一个树结构,包含了树的高度
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
int Height(Position P) //取得树的高
{
if(P==NULL)
return -;
else
return P->Height; }
int Max(AvlTree T1, AvlTree T2) //获得大值
{
if(T1->Height>T2->Height)
return T1->Height;
else
return T2->Height;
} AvlTree Insert(ElmentType x,AvlTree T) // 树的插入
{
if(T==NULL)
{
T=new AvlTree();
T->Element=x;
T->Left=NULL;
T->Right=NULL;
T->Height=;
}
else if(x<T->Element) //插入到当前树的左子树中
{
T->Left=Insert(x,T->Left);
if(Height(T->Left)-Height(T->Right)==)//如果树不平衡
{
if(x<T->Left->Element) //左左插入只需要进行单旋转
T=SingleRotateWithLeft(T);
else //左右插入需要进行双旋转,单旋转不能改变去不平衡的状态
T=DoubleRotateWithLeft(T);
}
}
else if(x>T->Element)//插入到当前树的右子树中
{
T->Right=Insert(x,T->Right);
if(Height(T->Right)-Height(T->Left)==)
{
if(x>T->Right->Element) //右右插入只需要进行单旋转
T=SingleRotateWithRight(T);
else //右左插入需要进行双旋转,单旋转不能改变去不平衡的状态
T=DoubleRotateWithRight(T);
}
}
else{cout<<"error:不能插入相同的树结点"};
T->Height=Max(Height(T->Left),Height(T->Right))+;
return T;
} Position singleRotateWithLeft(Position K2)//左左单旋
{
Position K1;
K1=K2->Left;
K2->Left=K1->Right;
K1->Right=K2;
K2->Height=Max(Height(K2->Left),Height(K2->Right))+;
K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
return K1;
}
Position singleRotateWithRight(Position K2)//右右单旋
{
Position K1;
K1=K2->Right;
K2->Right=K1->Left;
K1->Left=K2;
K2->Height=Max(Height(K2->Left),Height(K2->Right)+;
K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
return K1;
}
Position DoubleRotateWithLeft(Position K3)//左右双旋
{
Position K1,K2;
K2=K3->Left;
K1=K2->Right;
k2->Right=K1->Left;
K3->Left=K1->Right;
K1->Left=K2;
K1->Right=K3; K1->Height=Max(Height(K1->Left),Height(K1->Right))+;
K2->Height=Max(Height(K2->Left),Height(K2->Right)+;
K3->Height=Max(Height(K3->Left),Height(K3->Right)+; } Position DoubleRotateWithRight(Position K3)//右左双旋
{
//Rotate between k1 and K2;
K3->Right=singleRotateWithLeft(K3->Right);
//Rotate between k2 and k3;
return singleRotateWithRight(K3); }
AVL Tree 操作的更多相关文章
- 04-树5 Root of AVL Tree + AVL树操作集
平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...
- 树的平衡 AVL Tree
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...
- A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- PTA (Advanced Level) 1066 Root of AVL Tree
Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...
- 平衡二叉树(AVL Tree)
在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树. (由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- 转载:平衡二叉树(AVL Tree)
平衡二叉树(AVL Tree) 转载至:https://www.cnblogs.com/jielongAI/p/9565776.html 在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简 ...
随机推荐
- 小强的HTML5移动开发之路(18)——HTML5地理定位
来自:http://blog.csdn.net/dawanganban/article/details/18192091 在前面的<小强的HTML5移动开发之路(2)--HTML5的新特性> ...
- (NO.00002)iOS游戏精灵战争雏形(三)
在Sprite中新建Sprites文件夹,在其中添加Player.cc文件,确保其类型为Sprite. 将其Root节点的CCSprite的精灵帧设置为Image/sprite-2.png,然后打开物 ...
- ISLR系列:(1)线性回归 Linear Regression
Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本 ...
- 【翻译】在Ext JS和Sencha Touch中创建自定义布局
原文:Creating Custom Layouts in Ext JS and Sencha Touch 布局系统是Sencha框架中最强大和最独特的一部分.布局会处理应用程序中每个组件的大小和位置 ...
- laydate日期空间与时间选择器
http://laydate.layui.com/
- 打开Visual Studio 2010,左下角显示正在从包...加载工具箱内容,卡住5、6秒!!!
在VS2010命令提示符用 devenv /ResetSkipPkgs 或者 devenv /ResetSettings
- OpenCV 金字塔图像缩放
// image_pyramid.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <string> #incl ...
- 开源项目Git地址
1.陈明.李建勋.邓覃思 fog-aliyun https://git.oschina.net/dengqinsi/fog-aliyun.git 2.吴俊.骆仲军.袁良福 CDN的H5助 ...
- Unity Singleton 单例类(Unity3D开发之二十)
猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/47335197 ...
- Android 图片加载库Glide 实战(二),占位符,缓存,转换自签名高级实战
http://blog.csdn.net/sk719887916/article/details/40073747 请尊重原创 : skay <Android 图片加载库Glide 实战(一), ...