Some mathematical background. This problem asks you to compute the expected value of a random
variable. If you haven't seen those before, the simple denitions are as follows. A random variable is a
variable that can have one of several values, each with a certain probability. The probabilities of each
possible value are positive and add up to one. The expected value of a random variable is simply the
sum of all its possible values, each multiplied by the corresponding probability. (There are some more
complicated, more general denitions, but you won't need them now.) For example, the value of a fair,
6-sided die is a random variable that has 6 possible values (from 1 to 6), each with a probability of 1/6.
Its expected value is 1=6 + 2=6 + : : : + 6=6 = 3:5. Now the problem.
I like to play solitaire. Each time I play a game, I have probability p of solving it and probability
(1 .. p) of failing. The game keeps statistics of all my games { what percentage of games I have won.
If I simply keep playing for a long time, this percentage will always hover somewhere around p 100%.
But I want more.
Here is my plan. Every day, I will play a game of solitaire. If I win, I'll go to sleep happy until
the next day. If I lose, I'll keep playing until the fraction of games I have won today becomes larger
than p. At this point, I'll declare victory and go to sleep. As you can see, at the end of each day, I'm
guaranteed to always keep my statistics above the expected p 100%. I will have beaten mathematics!
If your intuition is telling you that something here must break, then you are right. I can't keep
doing this forever because there is a limit on the number of games I can play in one day. Let's say that
I can play at most n games in one day. How many days can I expect to be able to continue with my
clever plan before it fails? Note that the answer is always at least 1 because it takes me a whole day
of playing to reach a failure.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one is a line containing
p (as a fraction) and n.
1 < N < 3000, 0 < p < 1,
The denominator of p will be at most 1000,
1 < n < 100.
Output
For each test case, print a line of the form `Case #x: y', where y is the expected number of days,
rounded down to the nearest integer. The answer will always be at most 1000 and will never be within
0.001 of a round-off error case.
Sample Input
4
1/2 1
1/2 2
0/1 10
1/2 3
Sample Output
Case #1: 2
Case #2: 2
Case #3: 1
Case #4: 2

题意:

有一个人,每天最多玩牌n次,每次获胜概率为p,如果今天胜率大于p,他就会去睡觉,如果玩了k把之后,胜率还是没有大于p,那他就会戒掉这个游戏,问他玩这个游戏天数的期望。(向下取整)

思路:

dp[i][j]表示第i天玩到第j把,胜率小于p的概率。

设Q=∑d(n,i)(i/n<p)

Ex=1/Q

#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
double dp[][];
int main()
{
// ios::sync_with_stdio(false);
freopen("in.txt","r",stdin); int cases=;
int T;
scanf("%d",&T);
while (T--){
int p1,p2;
scanf("%d/%d",&p1,&p2);
double p=1.0*p1/p2;
int n;
scanf("%d",&n); dp[][]=;
// fuck(p)
for(int i=;i<=n;i++){
dp[i][]=pow(-p,i);
for(int j=;j<=n;j++){
if(p1*i<p2*j){ break;}
dp[i][j]=dp[i-][j-]*p+dp[i-][j]*(-p);
}
}
double q=;
for(int i=;i<=n;i++){
if(1.0*i/n<=p){
q+=dp[n][i];
// fuck(dp[n][i])
}
}
int ans=1.0/q;
printf("Case #%d: %d\n",++cases,ans); }
return ;
}

                           

UVA - 11427 Expect the Expected (概率dp)的更多相关文章

  1. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  2. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  3. UVA 11427 Expect the Expected(DP+概率)

    链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...

  4. 11427 - Expect the Expected(概率期望)

    11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...

  5. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  6. UVa 11427 - Expect the Expected

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. UVA 11427 Expect the Expected (期望)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...

  8. UVA11427 Expect the Expected 概率dp+全概率公式

    题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...

  9. UVA.11427.Expect the Expected(期望)

    题目链接 \(Description\) https://blog.csdn.net/Yukizzz/article/details/52084528 \(Solution\) 首先每一天之间是独立的 ...

随机推荐

  1. CSS实现无外边框列表效果

    方法一:使用外层容器切割 给每一个 li 设定右边框和下边框线 把ul放置在一个外层div中,设定div的宽高,通过overflow:hidden将一部分li的边框隐藏 此方法只需要计算父容器的宽高, ...

  2. CSS重要知识概述——Java Web从入门到精通第2章

    一.CSS简单规则 CSS样式表包含3部分内容:选择符.属性和属性值 其中选择符包括基本的3种选择器: 1.标记选择器,如<a></a>标签等: 2.类别选择器,用class属 ...

  3. Android Studio教程05-Parcelables和Bundles.md

    Parcelable并且Bundle对象旨在用于跨IPC / Binder事务等进程边界,活动与意图之间以及跨配置更改存储瞬态.本页面提供使用Parcelable和Bundle对象的建议和最佳实践 . ...

  4. java:nextInt()和nextLine()一起使用出错

    今天遇到一个很奇怪的事情,日常刷题中,遇到一个很简单的题: (不想看我多逼逼只想知道为什么会出错看最后) 题目: 题目描述 description 现有有N个学生的数据记录,每个记录包括学号.姓名.三 ...

  5. vue的表单编辑删除,保存取消功能

    过年回来第一篇博客,可能说的不是很清楚,而且心情可能也不是特别的high,虽然今天是元宵,我还在办公室11.30在加班,但就是想把写过的代码记下来,怕以后可能真的忘了.(心将塞未塞,欲塞未满) VUE ...

  6. git错误--ssh: Could not resolve hostname ssh.github.com: Name or service not known--解决方式

    错误如下: git push origin ssh: Could not resolve hostname ssh.github.com: Name or service not known fata ...

  7. rocketmq有序消息

    RocketMQ提供的顺序消费消息实现是使用的FIFO 先进先出算法 Producer消息发送 public class Producer { public static void main(Stri ...

  8. 记一次zabbix排错(数据库安装在其它服务器上)

    记一次zabbix排错 故障现象 1.在/var/log/zabbix/zabbix_server.log中出现以下报错: 12106:20190314:090947.010 [Z3001] conn ...

  9. 海思uboot启动流程详细分析(二)

    1. 第二个start.S 从start_armboot开始,在startup.c中有包含#include <config.h> 在config.h中: /* Automatically ...

  10. uboot的启动过程-FDT

    uboot的启动过程,省略了汇编部分之后,第一个执行函数是board_init_f(),在uboot/common目录的board_f.c中   board_init_f函数,首先初始化了全局数据 # ...