UVA - 11427 Expect the Expected (概率dp)
Some mathematical background. This problem asks you to compute the expected value of a random
variable. If you haven't seen those before, the simple denitions are as follows. A random variable is a
variable that can have one of several values, each with a certain probability. The probabilities of each
possible value are positive and add up to one. The expected value of a random variable is simply the
sum of all its possible values, each multiplied by the corresponding probability. (There are some more
complicated, more general denitions, but you won't need them now.) For example, the value of a fair,
6-sided die is a random variable that has 6 possible values (from 1 to 6), each with a probability of 1/6.
Its expected value is 1=6 + 2=6 + : : : + 6=6 = 3:5. Now the problem.
I like to play solitaire. Each time I play a game, I have probability p of solving it and probability
(1 .. p) of failing. The game keeps statistics of all my games { what percentage of games I have won.
If I simply keep playing for a long time, this percentage will always hover somewhere around p 100%.
But I want more.
Here is my plan. Every day, I will play a game of solitaire. If I win, I'll go to sleep happy until
the next day. If I lose, I'll keep playing until the fraction of games I have won today becomes larger
than p. At this point, I'll declare victory and go to sleep. As you can see, at the end of each day, I'm
guaranteed to always keep my statistics above the expected p 100%. I will have beaten mathematics!
If your intuition is telling you that something here must break, then you are right. I can't keep
doing this forever because there is a limit on the number of games I can play in one day. Let's say that
I can play at most n games in one day. How many days can I expect to be able to continue with my
clever plan before it fails? Note that the answer is always at least 1 because it takes me a whole day
of playing to reach a failure.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one is a line containing
p (as a fraction) and n.
1 < N < 3000, 0 < p < 1,
The denominator of p will be at most 1000,
1 < n < 100.
Output
For each test case, print a line of the form `Case #x: y', where y is the expected number of days,
rounded down to the nearest integer. The answer will always be at most 1000 and will never be within
0.001 of a round-off error case.
Sample Input
4
1/2 1
1/2 2
0/1 10
1/2 3
Sample Output
Case #1: 2
Case #2: 2
Case #3: 1
Case #4: 2
题意:
有一个人,每天最多玩牌n次,每次获胜概率为p,如果今天胜率大于p,他就会去睡觉,如果玩了k把之后,胜率还是没有大于p,那他就会戒掉这个游戏,问他玩这个游戏天数的期望。(向下取整)
思路:
dp[i][j]表示第i天玩到第j把,胜率小于p的概率。
设Q=∑d(n,i)(i/n<p)
Ex=1/Q
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
double dp[][];
int main()
{
// ios::sync_with_stdio(false);
freopen("in.txt","r",stdin); int cases=;
int T;
scanf("%d",&T);
while (T--){
int p1,p2;
scanf("%d/%d",&p1,&p2);
double p=1.0*p1/p2;
int n;
scanf("%d",&n); dp[][]=;
// fuck(p)
for(int i=;i<=n;i++){
dp[i][]=pow(-p,i);
for(int j=;j<=n;j++){
if(p1*i<p2*j){ break;}
dp[i][j]=dp[i-][j-]*p+dp[i-][j]*(-p);
}
}
double q=;
for(int i=;i<=n;i++){
if(1.0*i/n<=p){
q+=dp[n][i];
// fuck(dp[n][i])
}
}
int ans=1.0/q;
printf("Case #%d: %d\n",++cases,ans); }
return ;
}
UVA - 11427 Expect the Expected (概率dp)的更多相关文章
- UVA 11427 - Expect the Expected(概率递归预期)
UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...
- uva 11427 - Expect the Expected(概率)
题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...
- UVA 11427 Expect the Expected(DP+概率)
链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...
- 11427 - Expect the Expected(概率期望)
11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...
- UVa 11427 Expect the Expected (数学期望 + 概率DP)
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...
- UVa 11427 - Expect the Expected
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11427 Expect the Expected (期望)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...
- UVA11427 Expect the Expected 概率dp+全概率公式
题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...
- UVA.11427.Expect the Expected(期望)
题目链接 \(Description\) https://blog.csdn.net/Yukizzz/article/details/52084528 \(Solution\) 首先每一天之间是独立的 ...
随机推荐
- typescript中的泛型
泛型:软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性. 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能. 在像C#和Ja ...
- SwaggerAPI注解详解,以及注解常用参数配置
注解 @Api: 作用在类上,用来标注该类具体实现内容.表示标识这个类是swagger的资源 . 参数: tags:可以使用tags()允许您为操作设置多个标签的属性,而不是使用该属性. descri ...
- 在cmd里,java运行jar包中指定Class的命令
java -classpath ****.jar ****.****.className
- ORACLE复制表结构
一般网上的方法: ; --复制表结构以及数据按where条件查询出的数据 ; --只复制表结构 但是上面的语法不会复制旧表的默认值.注释.键和索引,因此想要完美的复制表结构就需要先找到旧表的sql语句 ...
- mysql 导出数据报错: row must be in range 0-65535
数据导出时,出现错误: 一脸懵逼,百度了下,是导出数量有格式有限制.一开始导出为excel表格式,后改为文本格式,不会报错.
- 从Linux 与 Unix 异同,看开源世界的发展!
从Linux 与 Unix 异同,看开源世界的发展! 如果你是一名20多岁或30多岁的软件开发人员,那么你已成长在一个由Linux主导的世界中.数十年来,它一直是数据中心的重要参与者,尽管很难找到明确 ...
- 利用 keras_proprecessing.image 扩增自己的遥感数据(多波段)
1.keras 自带的 keras_proprecessing.image 只支持三种模式图片(color_mode in ['grey', 'RGB', 'RGBA'])的随机扩增. 2.遥感数据除 ...
- linq中如何在join中指定多个条件
public ActionResult Edit(int id) { using (DataContext db = new DataContext(ConfigurationManager.Conn ...
- day06(深浅拷贝,元组,字典,集合)
1,今日内容: 1.深浅拷贝:**** 2.元组 - 元组可以存放可变类型 *** 3.字典:***** -- 增删改查 -- 常用方法 4.集合:** -- 集合运算 5.数据类型的相互转化 *** ...
- 最新:百度春节抢百万游戏--汤圆向前冲--辅助工具v1.0.0.2
https://www.cnblogs.com/Charltsing/p/ADBJumpTY.html 联系QQ:564955427 本程序为Windows版,不要在手机里面打开. 汤圆向前冲辅助工具 ...