UVA - 11427 Expect the Expected (概率dp)
Some mathematical background. This problem asks you to compute the expected value of a random
variable. If you haven't seen those before, the simple denitions are as follows. A random variable is a
variable that can have one of several values, each with a certain probability. The probabilities of each
possible value are positive and add up to one. The expected value of a random variable is simply the
sum of all its possible values, each multiplied by the corresponding probability. (There are some more
complicated, more general denitions, but you won't need them now.) For example, the value of a fair,
6-sided die is a random variable that has 6 possible values (from 1 to 6), each with a probability of 1/6.
Its expected value is 1=6 + 2=6 + : : : + 6=6 = 3:5. Now the problem.
I like to play solitaire. Each time I play a game, I have probability p of solving it and probability
(1 .. p) of failing. The game keeps statistics of all my games { what percentage of games I have won.
If I simply keep playing for a long time, this percentage will always hover somewhere around p 100%.
But I want more.
Here is my plan. Every day, I will play a game of solitaire. If I win, I'll go to sleep happy until
the next day. If I lose, I'll keep playing until the fraction of games I have won today becomes larger
than p. At this point, I'll declare victory and go to sleep. As you can see, at the end of each day, I'm
guaranteed to always keep my statistics above the expected p 100%. I will have beaten mathematics!
If your intuition is telling you that something here must break, then you are right. I can't keep
doing this forever because there is a limit on the number of games I can play in one day. Let's say that
I can play at most n games in one day. How many days can I expect to be able to continue with my
clever plan before it fails? Note that the answer is always at least 1 because it takes me a whole day
of playing to reach a failure.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one is a line containing
p (as a fraction) and n.
1 < N < 3000, 0 < p < 1,
The denominator of p will be at most 1000,
1 < n < 100.
Output
For each test case, print a line of the form `Case #x: y', where y is the expected number of days,
rounded down to the nearest integer. The answer will always be at most 1000 and will never be within
0.001 of a round-off error case.
Sample Input
4
1/2 1
1/2 2
0/1 10
1/2 3
Sample Output
Case #1: 2
Case #2: 2
Case #3: 1
Case #4: 2
题意:
有一个人,每天最多玩牌n次,每次获胜概率为p,如果今天胜率大于p,他就会去睡觉,如果玩了k把之后,胜率还是没有大于p,那他就会戒掉这个游戏,问他玩这个游戏天数的期望。(向下取整)
思路:
dp[i][j]表示第i天玩到第j把,胜率小于p的概率。
设Q=∑d(n,i)(i/n<p)
Ex=1/Q
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
double dp[][];
int main()
{
// ios::sync_with_stdio(false);
freopen("in.txt","r",stdin); int cases=;
int T;
scanf("%d",&T);
while (T--){
int p1,p2;
scanf("%d/%d",&p1,&p2);
double p=1.0*p1/p2;
int n;
scanf("%d",&n); dp[][]=;
// fuck(p)
for(int i=;i<=n;i++){
dp[i][]=pow(-p,i);
for(int j=;j<=n;j++){
if(p1*i<p2*j){ break;}
dp[i][j]=dp[i-][j-]*p+dp[i-][j]*(-p);
}
}
double q=;
for(int i=;i<=n;i++){
if(1.0*i/n<=p){
q+=dp[n][i];
// fuck(dp[n][i])
}
}
int ans=1.0/q;
printf("Case #%d: %d\n",++cases,ans); }
return ;
}
UVA - 11427 Expect the Expected (概率dp)的更多相关文章
- UVA 11427 - Expect the Expected(概率递归预期)
UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...
- uva 11427 - Expect the Expected(概率)
题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...
- UVA 11427 Expect the Expected(DP+概率)
链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...
- 11427 - Expect the Expected(概率期望)
11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...
- UVa 11427 Expect the Expected (数学期望 + 概率DP)
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...
- UVa 11427 - Expect the Expected
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11427 Expect the Expected (期望)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...
- UVA11427 Expect the Expected 概率dp+全概率公式
题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...
- UVA.11427.Expect the Expected(期望)
题目链接 \(Description\) https://blog.csdn.net/Yukizzz/article/details/52084528 \(Solution\) 首先每一天之间是独立的 ...
随机推荐
- Apache2配置多域名站点及支持https
0x00 预备条件 申请SSL证书 建立对应站点目录 开放443端口 0x01 配置sites-available文件 执行 vi /etc/apache2/sites-available/zecoc ...
- MyBatis学习---逆向工程 Mybatis Generator代码生成
[目录]
- 服务器部署Apache+PHP+MYSQL+Laravel
1.安装PHP 添加php安装源: sudo apt-get install python-software-properties sudo add-apt-repository ppa:ondrej ...
- 啰嗦的 java,简洁的 lombok —— lombok 的使用及简单实现单例模式注解
lombok 是什么? lombok 是一个非常神奇的 java 类库,会利用注解自动生成 java Bean 中烦人的 Getter.Setting,还能自动生成 logger.ToString.H ...
- rocketmq简单消息发送
有以下3种方式发送RocketMQ消息 可靠同步发送 reliable synchronous 可靠异步发送 reliable asynchronous 单向发送 one-way transmissi ...
- Hive分桶
1.简介 分桶表是对列值取哈希值的方式将不同数据放到不同文件中进行存储.对于hive中每一个表,分区都可以进一步进行分桶.由列的哈希值除以桶的个数来决定数据划分到哪个桶里. 2.适用场景 1.数据抽样 ...
- Webdriver之API详解(3)
前言 前两篇API链接 https://www.cnblogs.com/linuxchao/p/linuxchao-selenium-apione.html https://www.cnblogs.c ...
- 用css 添加手状样式,鼠标移上去变小手,变小手
用css 添加手状样式,鼠标移上去变小手,变小手 cursor:pointer; 用JS使鼠标变小手onmouseover(鼠标越过的时候) onmouseover="this.style. ...
- Redis和MongoDB的区别(面试受用)
项目中用的是MongoDB,但是为什么用其实当时选型的时候也没有太多考虑,只是认为数据量比较大,所以采用MongoDB. 最近又想起为什么用MongoDB,就查阅一下,汇总汇总: 之前也用过redis ...
- JS去除掉字符串前后空格
1. 推荐使用jquery已封装好的方法,非常简单 $.trim(str) jquery的内部实现如下, function trim(str){ return str.replace(/^(\s|\u ...