Some mathematical background. This problem asks you to compute the expected value of a random
variable. If you haven't seen those before, the simple denitions are as follows. A random variable is a
variable that can have one of several values, each with a certain probability. The probabilities of each
possible value are positive and add up to one. The expected value of a random variable is simply the
sum of all its possible values, each multiplied by the corresponding probability. (There are some more
complicated, more general denitions, but you won't need them now.) For example, the value of a fair,
6-sided die is a random variable that has 6 possible values (from 1 to 6), each with a probability of 1/6.
Its expected value is 1=6 + 2=6 + : : : + 6=6 = 3:5. Now the problem.
I like to play solitaire. Each time I play a game, I have probability p of solving it and probability
(1 .. p) of failing. The game keeps statistics of all my games { what percentage of games I have won.
If I simply keep playing for a long time, this percentage will always hover somewhere around p 100%.
But I want more.
Here is my plan. Every day, I will play a game of solitaire. If I win, I'll go to sleep happy until
the next day. If I lose, I'll keep playing until the fraction of games I have won today becomes larger
than p. At this point, I'll declare victory and go to sleep. As you can see, at the end of each day, I'm
guaranteed to always keep my statistics above the expected p 100%. I will have beaten mathematics!
If your intuition is telling you that something here must break, then you are right. I can't keep
doing this forever because there is a limit on the number of games I can play in one day. Let's say that
I can play at most n games in one day. How many days can I expect to be able to continue with my
clever plan before it fails? Note that the answer is always at least 1 because it takes me a whole day
of playing to reach a failure.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one is a line containing
p (as a fraction) and n.
1 < N < 3000, 0 < p < 1,
The denominator of p will be at most 1000,
1 < n < 100.
Output
For each test case, print a line of the form `Case #x: y', where y is the expected number of days,
rounded down to the nearest integer. The answer will always be at most 1000 and will never be within
0.001 of a round-off error case.
Sample Input
4
1/2 1
1/2 2
0/1 10
1/2 3
Sample Output
Case #1: 2
Case #2: 2
Case #3: 1
Case #4: 2

题意:

有一个人,每天最多玩牌n次,每次获胜概率为p,如果今天胜率大于p,他就会去睡觉,如果玩了k把之后,胜率还是没有大于p,那他就会戒掉这个游戏,问他玩这个游戏天数的期望。(向下取整)

思路:

dp[i][j]表示第i天玩到第j把,胜率小于p的概率。

设Q=∑d(n,i)(i/n<p)

Ex=1/Q

#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
double dp[][];
int main()
{
// ios::sync_with_stdio(false);
freopen("in.txt","r",stdin); int cases=;
int T;
scanf("%d",&T);
while (T--){
int p1,p2;
scanf("%d/%d",&p1,&p2);
double p=1.0*p1/p2;
int n;
scanf("%d",&n); dp[][]=;
// fuck(p)
for(int i=;i<=n;i++){
dp[i][]=pow(-p,i);
for(int j=;j<=n;j++){
if(p1*i<p2*j){ break;}
dp[i][j]=dp[i-][j-]*p+dp[i-][j]*(-p);
}
}
double q=;
for(int i=;i<=n;i++){
if(1.0*i/n<=p){
q+=dp[n][i];
// fuck(dp[n][i])
}
}
int ans=1.0/q;
printf("Case #%d: %d\n",++cases,ans); }
return ;
}

                           

UVA - 11427 Expect the Expected (概率dp)的更多相关文章

  1. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  2. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  3. UVA 11427 Expect the Expected(DP+概率)

    链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...

  4. 11427 - Expect the Expected(概率期望)

    11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...

  5. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  6. UVa 11427 - Expect the Expected

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. UVA 11427 Expect the Expected (期望)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...

  8. UVA11427 Expect the Expected 概率dp+全概率公式

    题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...

  9. UVA.11427.Expect the Expected(期望)

    题目链接 \(Description\) https://blog.csdn.net/Yukizzz/article/details/52084528 \(Solution\) 首先每一天之间是独立的 ...

随机推荐

  1. 学习笔记—JDBC

    JDBC的概念 JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言 ...

  2. js循环语句

    1.for循环 for(语句1:语句2:语句3){ 代码块 } //语句1:初始化表达式; //语句2:条件表达式; //语句3:更新表达式; 2.for-in循环 for(x in object){ ...

  3. Web前端2019面试总结

    基础知识点   1.水平垂直居中 子绝父相,子盒子设置绝对定位,设置top:50%;left:50%,margin-top:-50%;margin-left:-50%; 子绝父相,子盒子设置绝对定位, ...

  4. 基于Xamarin Android实现的简单的浏览器

    最近做了一个Android浏览器,当然功能比较简单,主要实现了自己想要的一些功能……现在有好多浏览器为什么还要自己写?当你使用的时候总有那么一些地方不如意,于是就想自己写一个. 开发环境:Xamari ...

  5. mapfile中关于栅格数据的processing项说明

    mapfile是MapServer中地图的配置文件,规定了地图的源数据.投影.样式等一系列信息.用MapServer发布影像地图,需要用以下processing项设置地图的风格样式. BANDS=re ...

  6. event 和delegate的分别

    突然想起delegate委托是支持+= 和-=操作的,然后研究一下究竟这个是怎么做到的,好模仿一下.一开始以为是+=的运算符重载,但是在类库参考中并没有这个运算符重载,只有!= 和==运算符重载.有点 ...

  7. 理解SignalR

    ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现即时通信(即:客户端(Web页面)和服务器端可以互相实时的通知消息及调用方法),即时通讯W ...

  8. 根据Webservice地址,动态传入参数(Webservice代理类)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Sunlib; ...

  9. 记录Javascript集合操作

    function Set() { var items = {}; /** * 添加元素 * @param {[type]} value [description] */ this.add = func ...

  10. 利用gulp,当引入文件改动时,版本号自动更新~

    gulp自动更新版本号 安装依赖 yarn add gulp-rev yarn add gulp-rev-collector 本次依赖的版本号为: "gulp": "^3 ...