[LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input:[10,9,2,5,3,7,101,18]Output: 4
Explanation: The longest increasing subsequence is[2,3,7,101], therefore the length is4.
Note:
- There may be more than one LIS combination, it is only necessary for you to return the length.
- Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(), );
int res = ;
for (int i = ; i < nums.size(); ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] > nums[j]) {
dp[i] = max(dp[i], dp[j] + );
}
}
res = max(res, dp[i]);
}
return res;
}
};
下面来看一种优化时间复杂度到 O(nlgn) 的解法,这里用到了二分查找法,所以才能加快运行时间哇。思路是,先建立一个数组 ends,把首元素放进去,然后比较之后的元素,如果遍历到的新元素比 ends 数组中的首元素小的话,替换首元素为此新元素,如果遍历到的新元素比 ends 数组中的末尾元素还大的话,将此新元素添加到 ends 数组末尾(注意不覆盖原末尾元素)。如果遍历到的新元素比 ends 数组首元素大,比尾元素小时,此时用二分查找法找到第一个不小于此新元素的位置,覆盖掉位置的原来的数字,以此类推直至遍历完整个 nums 数组,此时 ends 数组的长度就是要求的LIS的长度,特别注意的是 ends 数组的值可能不是一个真实的 LIS,比如若输入数组 nums 为 {4, 2, 4, 5, 3, 7},那么算完后的 ends 数组为 {2, 3, 5, 7},可以发现它不是一个原数组的 LIS,只是长度相等而已,千万要注意这点。参见代码如下:
解法二:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.empty()) return ;
vector<int> ends{nums[]};
for (auto a : nums) {
if (a < ends[]) ends[] = a;
else if (a > ends.back()) ends.push_back(a);
else {
int left = , right = ends.size();
while (left < right) {
int mid = left + (right - left) / ;
if (ends[mid] < a) left = mid + ;
else right = mid;
}
ends[right] = a;
}
}
return ends.size();
}
};
我们来看一种思路更清晰的二分查找法,跟上面那种方法很类似,思路是先建立一个空的 dp 数组,然后开始遍历原数组,对于每一个遍历到的数字,用二分查找法在 dp 数组找第一个不小于它的数字,如果这个数字不存在,那么直接在 dp 数组后面加上遍历到的数字,如果存在,则将这个数字更新为当前遍历到的数字,最后返回 dp 数组的长度即可,注意的是,跟上面的方法一样,特别注意的是 dp 数组的值可能不是一个真实的 LIS。参见代码如下:
解法三:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp;
for (int i = ; i < nums.size(); ++i) {
int left = , right = dp.size();
while (left < right) {
int mid = left + (right - left) / ;
if (dp[mid] < nums[i]) left = mid + ;
else right = mid;
}
if (right >= dp.size()) dp.push_back(nums[i]);
else dp[right] = nums[i];
}
return dp.size();
}
};
下面来看两种比较 tricky 的解法,利用到了 C++ 中 STL 的 lower_bound 函数,lower_bound 返回数组中第一个不小于指定值的元素,跟上面的算法类似,还需要一个一维数组v,然后对于遍历到的 nums 中每一个元素,找其 lower_bound,如果没有 lower_bound,说明新元素比一维数组的尾元素还要大,直接添加到数组v中,跟解法二的思路相同了。如果有 lower_bound,说明新元素不是最大的,将其 lower_bound 替换为新元素,这个过程跟算法二的二分查找法的部分实现相同功能,最后也是返回数组v的长度,注意数组v也不一定是真实的 LIS,参见代码如下:
解法四:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> v;
for (auto a : nums) {
auto it = lower_bound(v.begin(), v.end(), a);
if (it == v.end()) v.push_back(a);
else *it = a;
}
return v.size();
}
};
既然能用 lower_bound,那么 upper_bound 就耐不住寂寞了,也要出来解个题。upper_bound 是返回数组中第一个大于指定值的元素,和 lower_bound 的区别时,它不能返回和指定值相等的元素,那么当新进来的数和数组中尾元素一样大时,upper_bound 无法返回这个元素,那么按算法三的处理方法是加到数组中,这样就不是严格的递增子串了,所以要做个处理,在处理每个新进来的元素时,先判断数组v中有无此元素,有的话直接跳过,这样就避免了相同数字的情况,参见代码如下:
解法五:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> v;
for (auto a : nums) {
if (find(v.begin(), v.end(), a) != v.end()) continue;
auto it = upper_bound(v.begin(), v.end(), a);
if (it == v.end()) v.push_back(a);
else *it = a;
}
return v.size();
}
};
还有一种稍微复杂点的方法,参见我的另一篇博客 Longest Increasing Subsequence,那是 LintCode 上的题,但是有点不同的是,那道题让求的 LIS 不是严格的递增的,允许相同元素存在。
Github 同步地址:
https://github.com/grandyang/leetcode/issues/300
类似题目:
Increasing Triplet Subsequence
Number of Longest Increasing Subsequence
Minimum ASCII Delete Sum for Two Strings
参考资料:
https://leetcode.com/problems/longest-increasing-subsequence/
[LeetCode] Longest Increasing Subsequence 最长递增子序列的更多相关文章
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- poj 2533 Longest Ordered Subsequence 最长递增子序列
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...
随机推荐
- Vertica license导入最佳实践
常用的方法,我们可以通过admintools字符图形工具来导入license, 7 -> 5 -> 选择库 -> 输入license文件全路径 -> Accept -> ...
- C#——this关键字(1)
//我的C#是跟着猛哥(刘铁猛)(算是我的正式老师)<C#语言入门详解>学习的,微信上猛哥也给我讲解了一些不懂得地方,对于我来说简直是一笔巨额财富,难得良师! 在学习C#的时候,老师讲的示 ...
- Docker的ubuntu镜像安装的容器无ifconfig和ping命令的解决
Docker的Ubuntu镜像安装的容器无ifconfig命令和ping命令 解决: apt-get update apt install net-tools # ifconfig apt ...
- js Form.elements[i]的使用实例
function pdf(){ //一个html里面可能存在多个form,所以document.form[0]指的是第一个form,document.form[1]返回就是第二个form,如果没 ...
- python 学习笔记 -logging模块(日志)
模块级函数 logging.getLogger([name]):返回一个logger对象,如果没有指定名字将返回root loggerlogging.debug().logging.info().lo ...
- java中如何实现多态
复习基础知识 多态,就是重载和重写.重载发生在一个类中.重写发生在子类,意思就是子类重写父类相同名称的方法.刚学语言有的东西,不必搞得那么清楚,只有知道怎么用就行了,有的问题你要想真正把它搞得很懂,短 ...
- delphi连接sql存储过程
针对返回结果为参数的 一. 先建立自己的存储过程 ALTER PROCEDURE [dbo].[REName] ) AS BEGIN select ROW_NUMBER() over(order by ...
- JavaScript数组方法reduce解析
Array.prototype.reduce() 概述 reduce()方法是数组的一个实例方法(共有方法),可以被数组的实例对象调用.reduce() 方法接收一个函数作为累加器(accumulat ...
- emoji哈哈哈哈
Unicode 官网上的FAQ令人发笑,啊哈哈哈 Q: What are the most popular emoji characters? Q: Do emoji characters have ...
- dyld 加载 Mach-O
➠更多技术干货请戳:听云博客 前言 最近看 ObjC的runtime 是怎么实现 +load 钩子函数的实现.进而引申分析了 dyld 处理 Mach-O 的这部分机制. 1.简单分析 Mach-O ...