[BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
Source
Solution
懒,不想写大段的证明(况且我觉得我讲不懂),可以戳这,该大神讲的非常清楚
或许$prufer$的魅力就在于每一个地方可以放任意的数吧,这倒是解决了$BZOJ1430$的疑问
#include <bits/stdc++.h>
using namespace std;
int d[];
struct bigint
{
int a[], len; bigint()
{
memset(a, , ), len = ;
} bigint operator* (const int &rhs) const
{
bigint ans;
ans.len = len + ;
for(int i = ; i <= len; ++i)
ans.a[i] += a[i] * rhs;
for(int i = ; i < ans.len; ++i)
if(ans.a[i] > )
{
ans.a[i + ] += ans.a[i] / ;
ans.a[i] %= ;
}
while(!ans.a[--ans.len]);
return ans;
} bigint operator/ (const int &rhs) const
{
bigint ans;
ans = *this, ++ans.len;
for(int i = ans.len; i; --i)
{
ans.a[i - ] += ans.a[i] % rhs * ;
ans.a[i] /= rhs;
}
while(!ans.a[--ans.len]);
return ans;
}
}; int main()
{
int n, sum = , cnt = ;
bigint ans;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
{
scanf("%d", d + i);
if(!d[i])
{
puts("");
return ;
}
if(~d[i]) ++cnt, sum += d[i] - ;
}
if(sum > * n - )
{
puts("");
return ;
}
ans.a[] = ;
for(int i = n - - sum; i < n - ; ++i)
ans = ans * i;
for(int i = ; i <= n - - sum; ++i)
ans = ans * (n - cnt);
for(int i = ; i <= n; ++i)
for(int j = ; j <= d[i] - ; ++j)
ans = ans / j;
for(int i = ans.len; i; --i)
printf("%d", ans.a[i]);
puts("");
return ;
}
[BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)的更多相关文章
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- 【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Solution 这 ...
- BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...
随机推荐
- unbuntu 系统登录华南师范大学校园网的方法
最近刚装了unbuntu 系统,刚开始网络连接遇到了点小问题,原来是校园网不知道怎么认证,于是向好基友请教了下,得出快捷的方法如下: 下载学校网络的认证客户端,记住位置,一般都是默认下载地址是 Dow ...
- angular4升级angular5问题记录之No NgModule metadata found for 'AppModule'
在将项目从angular4升级到angular5的过程中,出现No NgModule metadata found for 'AppModule'问题,网上查找答案将app.module.ts进行再次 ...
- 测试任务汇总v1.0
2017.08.04 整理了目前我们所在团队需要做的日常任务 定义为v1.0
- idea 打开自动编译以及查看Problem窗口
1.打开perference 2.选择Build-Compile-Make Project Automatically自动构建项目
- Spring boot 整合redis单机版
一.安装redis 这个不多说,网上有各种系统安装redis的操作, redis安装 二.创建sprigboot项目 这个也不多说,不会的前面有相关教程. 三.添加maven坐标 四.编写spr ...
- 为什么说DOM操作很慢
转自http://www.cnblogs.com/yuzhongwusan/articles/5275933.html 一直都听说DOM很慢,要尽量少的去操作DOM,于是就想进一步去探究下为什么大 ...
- FFmpeg-音频和视频应用程序的瑞士军刀
FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件).它提供了录制.转换以及流化音视频的完整解决方案.它包含了非常先进的音频/视频编解码库l ...
- 随笔︱MRO-Microsoft R Open使用心得与相应内容总结
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 往期回顾: 新工具︱微软Microsoft ...
- 如何构造一个简单的USB过滤驱动程序
本文分三部分来介绍如何构造一个简单的USB过滤驱动程序,包括"基本原理"."程序的实现"."使用INF安装".此文的目的在于希望读者了解基本 ...
- Java中File类总结
/** * @Title:JavaFile.java * @Package:com.yhd.chart.model * @Description:File类测试 * @author:Youhaidon ...