最近在重写自己游戏引擎的场景管理模块,重温了一下有关四元数的一些知识,在此做一下简单的笔记。

四元数可以用来准确地描述三维矢量的旋转,并且可以有效地表达多个旋转操作的叠加,因此在三维游戏引擎的场景管理模块中,四元数具有很重要的意义。

本文为大便一箩筐的原创内容,转载请注明出处,谢谢:http://www.cnblogs.com/dbylk/


一、定义

形如A = ai + bj + ck + d的复数称为四元数,其中ijk为虚数(称为四元数的基元),a、b、c、d为实数。

二、常见性质

1. i2 = j2 = k2 = -1

2. ij = k       jk = i         ki = j

3. ij = –ji     jk = –kj      ki = -ki

4. ii* = 1     i* = –i       即i*与i共轭,jk同理

5. 四元数的乘法运算满足结合律与分配律,不满足交换律

6. 将四元数虚部看作三维矢量,则两个四元数的矢量部分乘积为αβ = -αβ +α×β,令四元数A = α + d1,B = β + d2,则

AB = -αβ +α×β + d2α + d1β + d1d2 = (d1a2 – c1b2 + b1c2 + a1d2) i
                                                                 + (c1a2 + d1b2 – a1c2 + b1d2) j
                                                                 + (-b1a2 + a1b2 + d1c2 + c1d2) k
                                                                 – a1a2 – b1b2 – c1c2 + d1d2

7. (AB)* = B*A*

8. 定义四元数 A = ai + bj + ck + d 的范数为:||A|| = a2 + b2 + c2 + d,模为:|A| = sqrt(a2 + b2 + c2 + d2)

9. 定义四元数A的逆为: A-1 = A* / ||A||

10. A-m = (A-1)m = (Am)-1

三、使用四元数表述矢量旋转

假设矢量α绕转轴e = (xe,ye,ze)旋转θ角得到β,则:

β = uαu-1

其中:

u = e sin(θ/2) + cos(θ/2)

u-1 = u* = - e sin(θ/2) + cos(θ/2)

因此,我们可以使用四元数u = (x,y,z,w)表示坐标旋转,其中:

x = sin(θ/2) xe

y = sin(θ/2) ye

z = sin(θ/2) ze

w = cos(θ/2)

四、使用矩阵表示坐标旋转

假设旋转轴为a = (xa,ya,za),旋转角为α,则旋转矩阵如下:

五、四元数与旋转矩阵的转化

根据半角公式:

sinα = 2sin(α/2)•cos(α/2)

cosα = cos2(α/2) - sin2(α/2)

cos2(α/2) = (1 +cosα)/2

sin2(α/2) = (1 -cosα)/2

四元数转化为旋转矩阵可表示如下:

四元数 Quaternion的更多相关文章

  1. 学习和研究下unity3d的四元数 Quaternion

    学习和研究下unity3d的四元数 Quaternion 今天准备学习和研究下unity3d的四元数 Quaternion 四元数在电脑图形学中用于表示物体的旋转,在unity中由x,y,z,w 表示 ...

  2. unity3d的四元数 Quaternion

    原地址:http://www.cnblogs.com/88999660/archive/2013/04/02/2995074.html 今天准备学习和研究下unity3d的四元数 Quaternion ...

  3. 四元数Quaternion的基本运算

    技术背景 在前面一篇文章中我们介绍了欧拉角死锁问题的一些产生背景,还有基于四元数的求解方案.四元数这个概念虽然重要,但是很少会在通识教育课程中涉及到,更多的是一些图形学或者是工程学当中才会进行讲解.本 ...

  4. 四元数quaternion

    四元数的简单方法运用四元数在Unity3D中的作用就是拿来表示旋转. AngleAxis 创建一个旋转,绕着某个轴旋转,返回结果是一个四元数. 跟ToAngleAxis实现的是相反的功能. Angle ...

  5. [Unity Quaternion]四元数Quaternion的计算方式

    什么是Quaternion四元数 1843年,William Rowan Hamilton发明了四元数,但直到1985年才有一个叫Ken Shoemake的人将四元数引入计算机图形学处理领域.四元数在 ...

  6. 【Unity编程】四元数(Quaternion)与欧拉角

    版权声明:本文为博主原创文章,欢迎转载.请保留博主链接:http://blog.csdn.net/andrewfan 欧拉旋转.四元数.矩阵旋转之间的差异 除了欧拉旋转以外,还有两种表示旋转的方式:矩 ...

  7. 【转】【Unity】四元数(Quaternion)和旋转

    http://blog.csdn.net/candycat1992/article/details/41254799

  8. 四元数和旋转(Quaternion & rotation)

    四元数和旋转(Quaternion & rotation) 本篇文章主要讲述3D空间中的旋转和四元数之间的关系.其中会涉及到矩阵.向量运算,旋转矩阵,四元数,旋转的四元数表示,四元数表示的旋转 ...

  9. 【Unity编程】Unity中关于四元数的API详解

    本文为博主原创文章,欢迎转载,请保留出处:http://blog.csdn.net/andrewfan Unity中关于四元数的API详解 Quaternion类 Quaternion(四元数)用于计 ...

随机推荐

  1. Check back what the kd 6 for more info

    Representing a shout-to his fans in China, the What the KD 6 may be the product of NIKEiD's Player E ...

  2. springboot 整合 CXF 版本异常 java.lang.NoClassDefFoundError:ServletRegistrationBean

    在使用SpringBoot 项目整合webservice组件 CXF的时候,在启动时,抛出异常如下,查阅资料初步判断为版本问题.升级到高版本后正常启动. cxf 刚开始使用版本  3.1.7 后更新为 ...

  3. JQuery点击标题实现div的收缩

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  4. 自适应Simpson公式

    参考刘汝佳<算法指南>P163 #include<cstdio> #include<cmath> double a; double F(double x){ +*a ...

  5. react.js 引用 NavBar 报错svg-spite-loader

    Navbar   iconName="false"  配置 改为  iconName={this.props.bool}

  6. javascript 设置元素滚动大小

    3. 滚动大小 最后要介绍的是滚动大小(scroll dimension),指的是包含滚动内容的元素的大小. 有些元素(例如 元素),即使没有执行任何代码也能自动地添加滚动条:但另外一些元素,则需要通 ...

  7. 【Python】高阶函数

    filter def is_palindrome(n): L = str(n) i = 0 j = len(L) - 1 while i != j: if L[i] != L[j]: return F ...

  8. DNSmasq安装配置

    dns安装配置yum -y install dnsmasq dns配置文件vi /etc/dnsmasq.confresolv-file=/etc/resolv.dnsmasq.confaddn-ho ...

  9. 2017杭电ACM集训队单人排位赛 - 6

    2017杭电ACM集训队单人排位赛 - 6 排名 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 59 1 X X 1 1 X X 0 1 ...

  10. Java 可重入锁

    一般意义上的可重入锁就是ReentrantLock http://www.cnblogs.com/hongdada/p/6057370.html 广义上的可重入锁是指: 可重入锁,也叫做递归锁,指的是 ...