http://www.lydsy.com/JudgeOnline/problem.php?id=1650

看到数据和最小最大时一眼就是二分。。。

但是仔细想想好像判断时不能贪心?

然后看题解还真是贪心。。囧。

原来是之前我脑残了。

。。。

贪心很简单

排序后。

当前点到之前的点的距离<m就累计(相当于删掉这个点,为什么呢?因为这个点假设last到的不是0,那么这个点删了后,因为后边的点的距离大于它,假设后边的点距离减去这个点的距离也是<m,那么显然删去这个点可以得到2个不用删去的点(否则一定要删去这两个点,这样就不是最优了)

否则之前的点变成当前点。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005;
int a[N], n, m, L;
bool check(int s) {
int last=0, tot=0;
for1(i, 1, n) {
if(a[i]-a[last]<s) {
++tot;
if(tot>m) return false;
}
else last=i;
}
return true;
}
int main() {
read(L); read(n); read(m);
for1(i, 1, n) read(a[i]);
sort(a+1, a+1+n);
a[n+1]=L;
int l=0, r=L;
while(l<=r) {
int m=(l+r)>>1;
if(check(m)) l=m+1;
else r=m-1;
}
print(l-1);
return 0;
}

Description

Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 <= L <= 1,000,000,000). Along the river between the starting and ending rocks, N (0 <= N <= 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 <= M <= N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks.

数轴上有n个石子,第i个石头的坐标为Di,现在要从0跳到L,每次条都从一个石子跳到相邻的下一个石子。现在FJ允许你移走M个石子,问移走这M个石子后,相邻两个石子距离的最小值的最大值是多少。

Input

* Line 1: Three space-separated integers: L, N, and M * Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position.

Output

* Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks

Sample Input

25 5 2
2
14
11
21
17

5 rocks at distances 2, 11, 14, 17, and 21. Starting rock at position
0, finishing rock at position 25.

Sample Output

4

HINT

移除之前,最短距离在位置2的石头和起点之间;移除位置2和位置14两个石头后,最短距离变成17和21或21和25之间的4.

Source

【BZOJ】1650: [Usaco2006 Dec]River Hopscotch 跳石子(二分+贪心)的更多相关文章

  1. bzoj 1650: [Usaco2006 Dec]River Hopscotch 跳石子【贪心+二分】

    脑子一抽写了个堆,发现不对才想起来最值用二分 然后判断的时候贪心的把不合mid的区间打通,看打通次数是否小于等于m即可 #include<iostream> #include<cst ...

  2. bzoj 1650: [Usaco2006 Dec]River Hopscotch 跳石子

    1650: [Usaco2006 Dec]River Hopscotch 跳石子 Time Limit: 5 Sec  Memory Limit: 64 MB Description Every ye ...

  3. BZOJ 1650 [Usaco2006 Dec]River Hopscotch 跳石子:二分

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1650 题意: 数轴上有n个石子,第i个石头的坐标为Di,现在要从0跳到L,每次条都从一个石 ...

  4. bzoj1650 [Usaco2006 Dec]River Hopscotch 跳石子

    Description Every year the cows hold an event featuring a peculiar version of hopscotch that involve ...

  5. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 [后缀数组]

    1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: ...

  6. Bzoj 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐 深搜,bitset

    1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 554  Solved: 346[ ...

  7. BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster( dp )

    有点类似背包 , 就是那样子搞... --------------------------------------------------------------------------------- ...

  8. BZOJ 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐( dfs )

    直接从每个奶牛所在的farm dfs , 然后算一下.. ----------------------------------------------------------------------- ...

  9. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式( 二分答案 + 后缀数组 )

    二分答案m, 后缀数组求出height数组后分组来判断. ------------------------------------------------------------ #include&l ...

随机推荐

  1. om.android.ide.common.process.ProcessException: org.gradle.process.internal.ExecException

    Error:Execution failed for task ':app:dexDebug'.> com.android.ide.common.process.ProcessException ...

  2. oracle 存储过程 变量的声明和赋值的3种方式

      oracle 存储过程 变量的声明和赋值的3种方式 CreationTime--2018年8月31日16点00分 Author:Marydon 1.声明变量的3种方式 按照数据类型的声明方式进行区 ...

  3. 转:Socket常用选项

    功能描述 获取或者设置与某个套接字关联的选 项.选项可能存在于多层协议中,它们总会出现在最上面的套接字层.当操作套接字选项时,选项位于的层和选项的名称必须给出.为了操作套接字层的选项,应该 将层的值指 ...

  4. PHP-根据字符串和所用字体计算字符串所占宽高

    今天由于用GD画图, 需要把一段文字在一个框内居中, 但是文字的宽度如果用strlen($str) * $font_size来计算的话, 由于文字不是等宽高的, 所以会导致偏离, 最后选用的GD库的i ...

  5. jquery 入门与知识

    一)什么是jQuery? [以封装的思想,重构<<图片显示和隐藏>>] 第三方组织预先写好的一些实用JS文件.类,方法,都统称为JS实用库,免费放在网上,同时配有相关的学习文档 ...

  6. 为什么要设置Java环境变量(详解)[转]

    从大二开始接触Java,之后是断断续续的学习.大三真正开始Java之旅,估计大部分初学者在学Java时被Java的环境变量搞的晕头转向,虽然找到了正确设置环境变量的方式,但其中的原因一知半解,设置压根 ...

  7. android 实现全屏代码

    设置全屏包括两个部分: 窗口全屏和Activity全屏. 窗口全屏 是指隐藏系统顶部用来显示时间.电量.信号等信息的标题栏 . Activity全屏 是指隐藏程序的标题栏.我们可以通过修改Androi ...

  8. C# 基础: new 和 overrider 的区别

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. Linux 设置IP,gate, 以及自动获取IP的方法

    一.使用命令设置ubuntu的ip地址 1.修改配置文件blacklist.conf禁用IPV6: sudo vi /etc/modprobe.d/blacklist.conf 2.在文档最后添加 b ...

  10. Oracle XE安装具体解释

    一.原数据库的卸载       数据库的卸载就不多说了,讲一下过程:       1.运行Oracle Uninstall,卸载Oracle产品     2.删除regedit下的全部Oracle相关 ...