http://172.20.6.3/Problem_Show.asp?id=1636

复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std;
const int maxn=;
const double eps=0.0001;
int n;
long long c[maxn][]={};
double e[maxn][maxn]={};
double t[maxn][maxn]={};
double w[maxn][maxn]={},k[maxn]={};
bool vis[maxn]={};
inline long long mabs(long long x){ return x>?x:-x; }
inline long long sqr(long long x){ return x*x; }
bool ke(double v){
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
w[i][j]=w[j][i]=t[i][j]-v*e[i][j];
}
}vis[]=;double fla=;
for(int i=;i<=n;i++){
k[i]=w[][i];
}
for(int i=;i<n;++i){
int u=-;
for(int j=;j<=n;++j){
if(!vis[j])
if(u==-||k[j]<k[u])u=j;
}
fla+=k[u];vis[u]=;
for(int j=;j<=n;++j){
if(!vis[j])
if(w[u][j]<k[j])k[j]=w[u][j];
}
}
return fla<=;
}
double doit(double l,double r){
while(r-l>eps){
double mid=(l+r)/;
if(ke(mid))r=mid;
else l=mid+eps;
}
return l;
}
int main(){
//freopen("wtf.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld%lld%lld",&c[i][],&c[i][],&c[i][]);
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
e[i][j]=sqrt((double)(sqr(c[i][]-c[j][])+sqr(c[i][]-c[j][])));
t[i][j]=(double)mabs(c[i][]-c[j][]);
e[j][i]=e[i][j];t[j][i]=t[i][j];
}
}printf("%.3f",doit(,));
return ;
}

POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim的更多相关文章

  1. 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)

    分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...

  2. 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)

    题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...

  3. 【BZOJ 4819】 4819: [Sdoi2017]新生舞会 (0-1分数规划、二分+KM)

    4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 601  Solved: 313 Description 学校 ...

  4. poj 3266 Cow School 分数规划

    这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的. 那么问题就转化成了 ...

  5. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  6. POJ 2976 Dropping tests:01分数规划【二分】

    题目链接:http://poj.org/problem?id=2976 题意: 共有n场考试,每场考试你得的分数为a[i],总分为b[i]. 你可以任意去掉k场考试. 问你最大的 100.0 * ( ...

  7. poj Dropping tests 01分数规划---Dinkelbach算法

    果然比二分要快将近一倍.63MS.二分94MS. #include <iostream> #include <algorithm> #include <cstdio> ...

  8. 洛谷P1404 平均数 [01分数规划,二分答案]

    题目传送门 平均数 题目描述 给一个长度为n的数列,我们需要找出该数列的一个子串,使得子串平均数最大化,并且子串长度>=m. 输入输出格式 输入格式: N+1行, 第一行两个整数n和m 接下来n ...

  9. poj 3621 0/1分数规划求最优比率生成环

    思路:以val[u]-ans*edge[i].len最为边权,判断是否有正环存在,若有,那么就是ans小了.否则就是大了. 在spfa判环时,先将所有点进队列. #include<iostrea ...

随机推荐

  1. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  2. Use of exceptionless, 作全局日志分布式记录处理

    Download latest release of exceptionless on github and deploy on Window server, by default exception ...

  3. ACM-ICPC北京赛区2018重现赛 A题

    题目链接:http://hihocoder.com/contest/icpcbeijing2018/problem/1 具体思路:dfs,判断矛盾就可以了. AC代码: #include<ios ...

  4. discuz 积分按日重新计算,(摒弃以前24小时计算)

    修改\source\module\forum\forum_misc.php将 foreach(C::t('forum_ratelog')->fetch_all_sum_score($_G['ui ...

  5. PyCharm 自定义文件和代码模板

    PyCharm提供了文件和代码模板功能,可以利用此模板来快捷新建代码或文件.比如在PyCharm中新建一个html文件,新的文件并不是空的,而是会自动填充了一些基础的必备的内容,就像这样: <! ...

  6. 宋牧春: Linux设备树文件结构与解析深度分析(1) 【转】

    转自:https://mp.weixin.qq.com/s/OX-aXd5MYlE_YoZ3p32qWA 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...

  7. python操作上级子文件

    . └── folder ├── data │ └── data.txt └── test1 └── test2 └── test.py import os '***获取当前目录***'print o ...

  8. Sklearn-GridSearchCV网格搜索

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  9. 最全Pycharm教程(26)——Pycharm搜索导航之文件名、符号名搜索(转)

    1.准备一个工程 向你的工程中添加一个Python文件,并输入一些源码,例如: 2.转到对应文件.类.符号 Pycharm提供的一个很强力的功能就是能够根据名称跳转到任何文件.类.符号所在定义位置. ...

  10. leetcode 168. Excel Sheet Column Title 171 Excel Sheet Column Number

    题目 //像10进制一样进行 转换   只是要从0开始记录 class Solution { public: string convertToTitle(int n) { char a; string ...