Break point and VC bound
Restriction of Break Point e.g: k=2 说明在所有的dichotomy中,任意两个点不能被shatter(shatter就是能够出现所有种排列组合),即不能出现这两个点的2^k=4种组合。
Bounding function B(N, k):
maximum possible when break point is k.
解释这张图:
如果k=1,则不管N等于多少,B都等于1,即H set要满足只有一个点都不能被shatter,即dichotomy set的大小不超过1。所以有+1就不能有-1,所以dichotomy set最多只能有1个dichotomy。所以B=1,第一列都为1. 如果N<k,即右上三角的部分,此时:任意k个点不能被shatter,即dichotomy set里面,对于那k个点不能出现2^k个组合。这个条件有和没有一样。所以右上三角的B值就为2^N。 如果N=k,当它们都等于2时,因为N=2不可以被shatter,即dichotomy set的大小要小于2^k=4,所以B(2,2)=3,其他对角线上的值同理,为(2^k)-1。
因此可以看出B是m_H的上限。
现在考虑下三角。 当N=4,k=3。现在有2^4=16种不同的dichotomy,从中选择不同的dichotomy set,有2^16种set,看看有没有违反3个点被shatter的set。通过遍历得到set的解为
所以B(4,3)=11 通过整理可得右上图。前4组,头3个点相同,x4不同。 B(4,3)=11=2alpha + beta。现在把x4去掉,只看x1-x3
这里有alpha+beta个dichotomy on x1-x3。 因为k=3,所以在N=4中任意3个x不能被shatter,包括x1-x3,所以alpha+beta<=B(3,3)。
如果只看alpha部分,在x1-x3内找出两个点,如果这两个点shatter了,加上x4,就变成了3个点shatter,这不满足条件,因此任意的在x1-x3内的两个点也不能shatter,所以alpha<=B(3,2) 所以有
所以:
所以B(N,k)有上限。
又因为B(N,k)是用来bound m_H(N)的,然后B(N,k)的上限是一个关于N的多项式,因此如果存在k的话,m_H(N)是有一个多项式的上限。
接下来用m_H(N)去取代Hoeffding里的M:
Break point and VC bound的更多相关文章
- 6 VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个 ...
- 【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...
- VC Dimension -衡量模型与样本的复杂度
(1)定义VC Dimension: dichotomies数量的上限是成长函数,成长函数的上限是边界函数: 所以VC Bound可以改写成: 下面我们定义VC Dimension: 对于某个备选函数 ...
- 机器学习基石的泛化理论及VC维部分整理(第六讲)
第六讲 第五讲主要讲了机器学习可能性,两个问题,(1)\(E_{in} 要和 E_{out}\) 有很接近,(2)\(E_{in}\)要足够小. 对于第一个假设,根据Hoefding's Inequa ...
- 机器学习基石的泛化理论及VC维部分整理(第五讲)
第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD \mathcal{D} \right ] \leq 2M \cd ...
- VC维度
由vc bound可以知道: $P(\exists h\in H~s.t~|E_{in}(h)-E_{out}(h)|>\epsilon)\\ \leq 4M_H(2N)exp(-\frac{ ...
- 机器学习基石7-The VC Dimension
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...
- VC维的来龙去脉——转载
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...
- VC dimension and Model complexity
可以把growth function m_H(N)的upper bound用N^(k-1)来限制, for N large, k>=3 Thus, 定义: VC Dimension: maxim ...
随机推荐
- 5.scala中的对象
排版乱?请移步原文获得更好的阅读体验 1.单例对象 scala中没有静态类或者静态方法,都是通过object实现的,它表示某个类的单例对象.如object People是class People的单例 ...
- fork有关趣味题
第一题: //fork1.c #include <unistd.h> #include <stdio.h> int main(void) { ; ; i < ; i++) ...
- java -jar 启动jar包 带参数
运行jar包时指定端口:java -jar xxx.jar --server.port=8088 server.port=8081 若命令行传入的server.port没有作用,服务仍然使用8081端 ...
- RabbitMQ 的路由模式 Topic模式
模型 生产者 package cn.wh; import java.io.IOException; import java.util.concurrent.TimeoutException; impo ...
- maven笔记(2)
项目管理利器(Maven)——maven的生命周期和插件Maven的生命周期大概如下:clean compile test package install这几个命令对应了一个项目的完整的构建过程,这几 ...
- go-statsd项目
linux命令: 进程:top 收包丢包:netstat -su[c持续输出] go tool pprof: 我们可以使用go tool pprof命令来交互式的访问概要文件的内容.命令将会分析指定的 ...
- pandas的常用函数
1.DataFrame的常用函数: (1)np.abs(frame) 绝对值, (2)apply function, lambda f= lambda x: x.max()-x.min(),frame ...
- jQuery 获取、设置表单元素的值
获取表单元素值: 文本框,文本区域: $("#txt").attr("value"): 多选框 checkbox:$("#checkbox_id&qu ...
- 安装fcitx
设置好软件源后,终端执行: sudo apt-get install fcitx fcitx-ui-* fcitx-sunpinyin fcitx-googlepinyin fcitx-pinyin ...
- AsyncCallback 异步回调委托
js是单线程语言,单线程就意味着,所有任务需要排队,前一个任务结束,才会执行后一个任务.如果前一个任务耗时很长,后一个任务就不得不一直等着. 如果排队是因为计算量大,CPU忙不过来,倒也算了,但是很多 ...