Luogu3576 POI2014 MRO-Ant colony


The ants are scavenging an abandoned ant hill in search of food.
The ant hill has nn chambers and n-1n−1 corridors connecting them.
We know that each chamber can be reached via a unique path from every other chamber.
In other words, the chambers and the corridors form a tree.
There is an entrance to the ant hill in every chamber with only one corridor leading into (or out of) it.
At each entry, there are gg groups ofm1,m2,⋯,mgm1,m2,⋯,mgants respectively.
These groups will enter the ant hill one after another, each successive group entering once there are no ants inside.
Inside the hill, the ants explore it in the following way:
Upon entering a chamber with dd outgoing corridors yet unexplored by the group,the group divides into dd groups of equal size. Each newly created group follows one of the d corridors.If d=0 , then the group exits the ant hill.
If the ants cannot divide into equal groups, then the stronger ants eat the weaker until a perfect division is possible.Note that such a division is always possible since eventually the number of ants drops down to zero.Nothing can stop the ants from allowing divisibility - in particular, an ant can eat itself, and the last one remaining will do so if the group is smaller than dd .
The following figure depicts mm ants upon entering a chamber with three outgoing unexplored corridors, dividing themselves into three (equal) groups of ⌊m/3⌋⌊m/3⌋ ants each.
A hungry anteater dug into one of the corridors and can now eat all the ants passing through it.
However, just like the ants, the anteater is very picky when it comes to numbers.
It will devour a passing group if and only if it consists of exactly k ants.
We want to know how many ants the anteater will eat.

给一棵树,对于每个叶子节点,都有g群蚂蚁要从外面进来,每群蚂蚁在行进过程中只要碰到岔路,就将平均地分成岔路口数-1那么多份,然后平均地走向剩下的那些岔路口,余下的蚂蚁自动消失,树上有一个关键边,假如有一群蚂蚁通过了这条边且数量恰好为k,这k只蚂蚁就被吃掉,问一共有多少只蚂蚁被吃掉

输入输出格式
输入格式:
The first line of the standard input contains three integers n, g , k (2≤n,g≤n,1≤k≤109)(2≤n,g≤n,1≤k≤109), separated by single spaces.These specify the number of chambers, the number of ant groups and the number of ants the anteater devours at once. The chambers are numbered from 1 to n.
The second line contains g integers m1,m2,⋯,mgm1,m2,⋯,mg( 1≤mi≤1091≤mi≤109), separated by single spaces, where mimigives the number of ants in the i -th group at every entrance to the ant hill. The n-1 lines that follow describe the corridors within the ant hill;the i -th such line contains two integers ai,biai,bi ( 1≤ai,bi≤n1≤ai,bi≤n ), separated by a single space, that indicate that the chambers no. aiai and bibi are linked by a corridor. The anteater has dug into the corridor that appears first on input.

输出格式:
Your program should print to the standard output a single line containing a single integer: the number of ants eaten by the anteater.


我们如果把那条需要计算贡献的边断开
就变成了两个子树,非常的友好, 我们发现询问和询问之间是独立的,所以我们可以考虑把每个点所有讯问的贡献一起统计

这样我们只需要DP出每个点合法的最大权值和最小权值,然后二分查找一下就好了

挂在二分边界上,wuwuwuwu


#include<bits/stdc++.h>
using namespace std;
#define N 1000010
#define LL long long
inline LL read(){
LL res=0,w=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(isdigit(ch))res=(res<<3)+(res<<1)+ch-'0',ch=getchar();
return w*res;
}
struct Edge{LL next,v;}E[N<<1];
LL S,T,cnt=0,k,n,m,head[N],d[N];
LL maxv[N],minv[N],num[N],ans,maxq=0;
vector<int> g;
void add(LL u,LL v){
E[++cnt]=(Edge){head[u],v};head[u]=cnt;
E[++cnt]=(Edge){head[v],u};head[v]=cnt;
d[u]++;d[v]++;
}
void dfs(LL u,LL fa){
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(v==fa)continue;
maxv[v]=(maxv[u]+1)*(d[u]-1)-1;
maxv[v]=min(maxq,maxv[v]);
minv[v]=minv[u]*(d[u]-1);
if(minv[v]<=maxq)dfs(v,u);
}
}
LL check(LL vl){
int l=1,r=m,ans=m+1;//注意二分边界
while(l<=r){
int mid=(l+r)>>1;
if(num[mid]>vl)ans=mid,r=mid-1;
else l=mid+1;
}
return ans;
}
int main(){
n=read();m=read();k=read();
for(int i=1;i<=m;i++)num[i]=read(),maxq=max(maxq,num[i]);
sort(num+1,num+m+1);
for(int i=1;i<n;i++){
int u=read(),v=read();
if(i==1)S=u,T=v;
add(u,v);
}
for(int i=1;i<=n;i++)if(d[i]==1)g.push_back(i);
maxv[S]=minv[S]=k;
maxv[T]=minv[T]=k;
dfs(S,T);
dfs(T,S);
for(int i=0;i<g.size();i++)
ans+=check(maxv[g[i]])-check(minv[g[i]]-1);
printf("%lld\n",1ll*ans*k);
}

Luogu3576 POI2014 MRO-Ant colony 【树形DP】*的更多相关文章

  1. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  2. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  3. [bzoj3872][Poi2014]Ant colony_树形dp

    Ant colony bzoj-3872 Poi-2014 题目大意:说不明白.....题目链接 注释:略. 想法:两个思路都行. 反正我们就是要求出每个叶子节点到根节点的每个路径权值积. 可以将边做 ...

  4. $bzoj3872\ [Poi2014]\ Ant\ colony$ 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 一年过去了依然没有头绪,,,$gql$的$NOIp$必将惨败了$kk$. 考虑倒推,因为知道知道除数和答案,所以可以推出被除数的范围,然后一路推到叶 ...

  5. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  6. 【BZOJ3522】[Poi2014]Hotel 树形DP

    [BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...

  7. 【BZOJ3522】【BZOJ4543】【POI2014】Hotel 树形DP 长链剖分 启发式合并

    题目大意 ​ 给你一棵树,求有多少个组点满足\(x\neq y,x\neq z,y\neq z,dist_{x,y}=dist_{x,z}=dist_{y,z}\) ​ \(1\leq n\leq 1 ...

  8. BZOJ3522[Poi2014]Hotel——树形DP

    题目描述 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房(间).三个妹子住的房间要互不相同(否则要打起来了),为了让吉丽 ...

  9. bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心

    题意: $mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子. $mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒 ...

随机推荐

  1. Visual Studio 2010 C++ 属性设置基础

    在 <Visual Studio 2010 C++ 工程文件解读>中提到了C++工程中可以进行用户自定义的属性设置,如何进行属性设置呢? 下面我们来了解一下 props 文件的基本规则: ...

  2. CALL_AND_RETRY_LAST Allocation failed node打包报错

    全局安装increase-memory-limit: npm install -g increase-memory-limit 进入工程目录,执行: increase-memory-limit

  3. Dive into Spring framework -- 了解基本原理(二)--设计模式-part1

    比较巧,自己在接触设计模式的时候,也刚开始学习spring,但可惜的是,真的仅仅在学习“用”spring,每天都沉浸在会痛快的完成spring各种配置的快乐之中,但对成长无用.其实当初就清楚,spri ...

  4. web.config文件配置解决网站上传大文件限制

    Asp.Net网站对上传文件的大小,请求执行的时间都做了限制,上传的文件如果超过限制或者执行上传时间超出, 文件上传都将失败. 因此,需要配置web.config来增加最大文件上传的大小和执行超时时间 ...

  5. 关于JNDI那点事

    一.JNDI是什么? JNDI--Java 命名和目录接口(Java Naming and Directory Interface),是一组在Java应用中访问命名和目录服务的API. 二.JNDI好 ...

  6. struts2中<s:checkboxlist/>的用法详解

    Html代码 选择角色<br> <s:checkboxlist list="#request.roleuserList" listKey="roleId ...

  7. 图 Graph-图的相关算法

    2018-03-06 17:42:02 一.最短路问题 问题描述:在网络中,求两个不同顶点之间的所有路径中,边的权值之和最小的那一条路径. 这条路径就是两点之间的最短路径 (Shortest Path ...

  8. npm install遇到的问题

    phantomjs-prebuilt@2.1.16 install: 'node install.js' 在虚拟机上初始化vue-cli项目,npm install时遇到的问题 npm install ...

  9. maven-surefire-plugin的forkMode分析

    Maven运行测试用例时,是通过调用maven的surefire插件并fork一个子进程来执行用例的.forkmode属性中指明是要为每个测试创建一个进程,还是所有测试在同一个进程中完成. <p ...

  10. SpringInAction--自动化装配Bean(隐式装配)

    关于Bean的介绍就具体不多介绍了,,, Spring在配置时候有三种方案可选 1.在xml中进行显示配置 2.在java中进行显示配置 3.隐式的Bean发现机制和自动装配 今天学习的就是自动化装配 ...