2017-08-10 19:35:32

整理者:pprp

用于计算C(m,n) % p

代码如下:

//lucas
#include <iostream> using namespace std; typedef long long ll; //a^b%m 快速幂
int quick_power_mod(int a, int b, int m)
{
int result = ;
int base = a;
while(b > )
{
if(b& == )//如果b是奇数
{
result = (result * base) % m;
}
base = (base * base)%m;
b>>=;
}
return result;
} //组合数取模 C(a,b)%p
ll composition(ll a, ll b, int p)
{
if(a < b)
return ;
if(a == b)
return ;
if(b > a - b) b = a - b; int ans = , ca = , cb = ;
for(ll i = ;i < b; i++)
{
ca = (ca * (a - i))%p;
cb = (cb * (b - i))%p;
} ans = (ca * quick_power_mod(cb,p - , p)) % p;
return ans;
} ll lucas(ll n , ll m , ll p)
{
ll ans = ;
while(n && m && ans)
{
ans = (ans * composition(n%p, m%p, p))%p;
n /= p;
m /= p;
}
return ans;
} int main()
{
ll m, n; while(cin >> m >> n)
{
cout << lucas(m,n,) << endl; //这里的104729是比较大的一个素数
}
return ;
}

组合数模板 - Lucas的更多相关文章

  1. 求大的组合数模板 利用Lucas定理

    Lucas定理:A.B是非负整数,p是质数.A B写成p进制:A=a[n]a[n-1]…a[0],B=b[n]b[n-1]…b[0]. 则组合数C(A,B)与C(a[n],b[n])C(a[n-1], ...

  2. [UOJ 275/BZOJ4737] 【清华集训2016】组合数问题 (LUCAS定理的运用+数位DP)

    题面 传送门:UOJ Solution 这题的数位DP好蛋疼啊qwq 好吧,我们说回正题. 首先,我们先回忆一下LUCAS定理: \(C_n^m \equiv C_{n/p}^{m/p} \times ...

  3. 【算法学习笔记】组合数与 Lucas 定理

    卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式 ...

  4. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  5. HDU 6114 Chess【逆元+组合数】(组合数模板题)

    <题目链接> 题目大意: 車是中国象棋中的一种棋子,它能攻击同一行或同一列中没有其他棋子阻隔的棋子.一天,小度在棋盘上摆起了许多車……他想知道,在一共N×M个点的矩形棋盘中摆最多个数的車使 ...

  6. HDU 3037 组合数、lucas,逆元

    题目链接 题目大意,N颗树上取不超过M个果子,求总方案个数模P的值,P是质数且不超过10w,N,M不超过1e9: 在这里树是被认为不同的,也就是将k(0<=k<=M)个小球放入N个不同的盒 ...

  7. 洛谷P3726 [AH2017/HNOI2017]抛硬币(组合数+扩展Lucas)

    题面 传送门 题解 果然--扩展\(Lucas\)学了跟没学一样-- 我们先考虑\(a=b\)的情况,这种情况下每一个\(A\)胜的方案中\(A\)和\(B\)的所有位上一起取反一定是一个\(A\)败 ...

  8. 【NOI2019模拟2019.6.29】组合数(Lucas定理、数位dp)

    Description: p<=10且p是质数,n<=7,l,r<=1e18 题解: Lucas定理: \(C_{n}^m=C_{n~mod~p}^{m~mod~p}*C_{n/p} ...

  9. 模板 lucas

    void extend_gcd(ll a,ll &x,ll b,ll &y){ ){ x=,y=; return; } ll x1,y1; extend_gcd(b,x1,a%b,y1 ...

随机推荐

  1. Spark 源码分析 -- BlockStore

    BlockStore 抽象接口类, 关键get和put都有两个版本序列化, putBytes, getBytes非序列化, putValues, getValues 其中putValues的返回值为P ...

  2. python基础-第十二篇-12.1jQuery基础与实例

    一.查找元素 1.选择器 基本选择器 $("*") $("#id") $(".class") $("element") ...

  3. 前端开发 - HTML - 总结

    html head标签 title 显示网站的标题 meta 提供有关页面的原信息 link 链接css资源文件.网站图标 style 定义内部样式表 script 链接脚本js文件 body标签 块 ...

  4. What’s wrong with virtual methods called through an interface

    May 31, 2016 Calling a virtual method through an interface always was a lot slower than calling a st ...

  5. C#中Datatable和List互相转换

    其实早就该写的,哈哈,不过今天刚想起来注册,热热手,就写一下,哈哈. 直接上内容吧: 建立一个控制台应用程序, List<students> Studentlist = new List& ...

  6. 微信iOS版更新:可批量管理不常联系的朋友

    iOS版微信更新了v6.5.13版本,在新版本当中微信新增加了可批量管理不常联系的朋友功能,同时在群资料页可以查看最近收到的小程序,不过据网友爆料,腾讯在新的更新日志当中已经删除了“批量管理不常联系的 ...

  7. 一种部署 Python 代码的新方法

    在Nylas,我们喜欢使用Python进行开发.它的语法简单并富有表现力,拥有大量可用的开源模块和框架,而且这个社区既受欢迎又有多样性.我们的后台是纯用 Python 写的,团队也经常在 PyCon ...

  8. python学习笔记(二十五)重写父类方法

    python继承中,如果子类在调用某个方法时,它首先是从派生类(也就是当前类)中去找对应的方法,如果当前类中找不到对应的方法,就会去基类(派生类)中去逐个查找. 若父类的方法不能满足子类的需要,那么子 ...

  9. Java游戏服务器成长之路——感悟篇

    又是一个美好的周末啊,现在一到周末,早上就起得晚,下午困了又会睡一两个小时,上班的时候,早上起来喝一杯咖啡,然后就能高效的工作一整天,然而到了周末人就懒散了,哈哈. 最近刚跳槽,到新公司已经干了有两周 ...

  10. docker——安装

    Docker划分为CE和EE.CE即社区版(免费,支持后期三个月),EE即企业版,强调安全,付费使用. #安装依赖包 yum install -y yum-utils device-mapper-pe ...