可推出$a_n = n^2+n, $ 设\(S_n = \sum_{i=1}^{n} a_i\) 则 \(S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}\)

需要求出\([1,N]\)中与\(M\)互质的下标的和

可以容斥计算答案,\(O(1)\)时间算出\(S_n\),需要减去与\(M\)非互质的下标\(a_i\)

对于\(M\)的每一种质因数的组合\(k\),可以求出\(b_kn = (kn)^2+kn\),则也可以\(O(1)\)得到在\(bn在[1-N]\)中的和.

根据容斥原理,奇数个质因子的组合要减去,偶数个的加回

#include <iostream>
#include <string>
#include <cmath>
#include <stdio.h>
#include <vector>
using namespace std;
const int mod= 1e9+7;
typedef long long LL;
vector<LL> fac; LL qpow(LL a,LL n)
{
LL res=1;
while(n){
if(n&1) res = res*a %mod;
a = a*a %mod;
n>>=1;
}
return res;
} LL solve(LL n,LL m)
{
LL rev6 = qpow((LL)6,mod-2);
LL rev2 = qpow((LL)2,mod-2);
fac.clear();
LL tmp = m;
for(LL i=2;i*i<=tmp;++i){
if(tmp%i==0){
fac.push_back(i);
while(tmp%i==0) tmp/=i;
}
}
if(tmp>1) fac.push_back(tmp); LL res = n *(n+1) %mod *(2*n+1) %mod *rev6 %mod;
LL t = n*(n+1) %mod *rev2 %mod;
res = (res+t) %mod; int len = fac.size();
int tot = 1<<len;
for(int i=1;i<tot;++i){
int cnt = __builtin_popcount(i);
LL tmp =1;
for(int j = 0;j<len;++j){
if(i&(1<<j)){
tmp *= fac[j];
}
}
LL nn = n/tmp;
LL pt = (nn)%mod *(nn+1)%mod *(2*nn+1) %mod*rev6%mod;
pt = pt*tmp %mod *tmp %mod;
pt = (pt+nn*(tmp+tmp*nn)%mod*rev2%mod) %mod;
if(cnt&1) res = (res-pt+mod)%mod;
else res = (res+pt)%mod;
}
return res;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
LL N,M;
while(scanf("%lld %lld",&N,&M)==2){
LL res = solve(N,M);
printf("%lld\n",res);
}
return 0;
}

ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire (容斥原理)的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire (素因子分解+容斥)

    . 样例输入复制 4 4 样例输出复制 14 #include<bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 G Spare Tire(容斥)

    https://nanti.jisuanke.com/t/31448 题意 已知a序列,给你一个n和m求小于n与m互质的数作为a序列的下标的和 分析 打表发现ai=i*(i+1). 易得前n项和为 S ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛 G. Spare Tire

    这题很好啊,好在我没做出来...大概分析了一下,题目大概意思就是求 问所有满足1<=i<=n且i与m互素的ai之和 最开始我们队的做法是类似线性筛的方法去筛所有数,把数筛出来后剩下数即可, ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 G 容斥原理

    https://nanti.jisuanke.com/t/31448 解析 易得an=n*n+n O(1)得到前n项和  再删除与m不互素的数  我们用欧拉函数求出m的质因数  枚举其集合的子集 进行 ...

  5. 【ACM-ICPC 2018 沈阳赛区网络预赛 G】Spare Tire

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 让你求出1..n中和m互质的位置i. 让你输出∑ai 这个ai可以oeis一波. 发现是ai = i(i+1) 1..n中和m互质的 ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  8. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

随机推荐

  1. Struts 2再曝远程代码执行漏洞S2-037

    导读今年4月份,Apache Stuts 2之上发现的S2-033远程代码执行漏洞,以迅雷不及掩耳之势席卷而来.其利用代码很快就在短时间内迅速传播.而且官方针对这个高危漏洞的修复方案还是无效的. 悲剧 ...

  2. Android之布局属性归纳

    第一类:属性值为true或falseandroid:layout_centerHrizontal 水平居中android:layout_centerVertical 垂直居中android:layou ...

  3. jquery与javescript的区别(一)

    一.找元素: <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /&g ...

  4. c++11 类型推断

    自动类型推断 当编译器能够在一个变量的声明时候就推断出它的类型,那么你就能够用auto关键字来作为他们的类型: auto x = 1; 编译器当然知道x是integer类型的.所以你就不用int了.接 ...

  5. Erstudio8.0怎么用?Erstudio8.0汉化版详细使用教程

    Erstudio8.0使用教程 打开ERstudio,点击新建出现如图对话框: 选择第一个,表示创建一个新的关系型 数据库模型 这里提一点数据库模型分为relational(关系)和dimension ...

  6. JZOJ.5326【NOIP2017模拟8.21】LCA 的统计

    Description

  7. 用httpclient做压力测试时Too many open files的解决办法

    在工作过程中,用httpclient去压测一个web api,发现压一小段时间就出现了Too many open files.实际上,HttpClient建立Socket时 ,post.release ...

  8. vue里监听安卓的物理返回键

    Hybrid App中,原生内嵌H5单页,由于安卓是有物理返回键的,按安卓物理返回键的时候会返回到上一个路由. 实际中需求是:当有弹层的时候,按物理返回键是关闭弹层,是页面的时候才执行返回上一个路由, ...

  9. Java23种设计模式学习笔记【目录总贴】

    创建型模式:关注对象的创建过程 1.单例​模式:保证一个类只有一个实例,并且提供一个访问该实例的全局访问点 主要: 饿汉式(线程安全,调用效率高,但是不能延时加载) 懒汉式(线程安全,调用效率不高,但 ...

  10. explain(desc)命令的使用

    获取 type:查询类型 1.可以判断出,全表扫描还是索引扫描(ALL就是全表扫描,其他就是索引扫描) 2.对于索引扫描来讲,可以西划分,可以判断是哪一种扫描 type的具体类型介绍: ALL:全表扫 ...