POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题
http://poj.org/problem?id=1222
http://poj.org/problem?id=1830
http://poj.org/problem?id=1681
http://poj.org/problem?id=1753
http://poj.org/problem?id=3185
这几个题目都类似,都可以使用高斯消元来求解一个模2的01方程组来解决。
有时候需要枚举自由变元,有的是判断存不存在解
普通的问题。
肯定有唯一解。肯定枚举第一行去做,也可以使用高斯消元。
/* ***********************************************
Author :kuangbin
Created Time :2013/8/17 18:25:42
File Name :F:\2013ACM练习\专题学习\高斯消元\POJ1222.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; //对2取模的01方程组
const int MAXN = ;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数 //返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num = ;
for(k = , col = ; k < equ && col < var ; k++, col++)
{
max_r = k;
for(int i = k+;i < equ;i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col;//这个是自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+;i < equ;i++)
{
if(a[i][col] != )
{
for(int j = col;j < var+;j++)
a[i][j] ^= a[k][j];
}
}
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;//无解
if(k < var) return var-k;//自由变元个数
//唯一解,回代
for(int i = var-; i >= ;i--)
{
x[i] = a[i][var];
for(int j = i+;j < var;j++)
x[i] ^= (a[i][j] && x[j]);
}
return ;
}
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
equ = ;
var = ;
for(int i = ;i < ;i++)
for(int j = ;j < ;j++)
{
int t = i*+j;
a[t][t] = ;
if(i > )a[(i-)*+j][t] = ;
if(i < )a[(i+)*+j][t] = ;
if(j > )a[i*+j-][t] = ;
if(j < )a[i*+j+][t] = ;
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int iCase = ;
scanf("%d",&T);
while(T--)
{
iCase++;
init();
for(int i = ;i < ;i++)
scanf("%d",&a[i][]);
Gauss();
printf("PUZZLE #%d\n",iCase);
for(int i = ;i < ;i++)
{
for(int j = ;j < ;j++)
printf("%d ",x[i*+j]);
printf("%d\n",x[i*+]);
}
}
return ;
}
输出方案数,就是求出有多少个自由变元就可以了。
/* ***********************************************
Author :kuangbin
Created Time :2013/8/17 19:44:33
File Name :F:\2013ACM练习\专题学习\高斯消元\POJ1830.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//对2取模的01方程组
const int MAXN = ;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数 //返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num = ;
for(k = , col = ; k < equ && col < var ; k++, col++)
{
max_r = k;
for(int i = k+;i < equ;i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col;//这个是自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+;i < equ;i++)
{
if(a[i][col] != )
{
for(int j = col;j < var+;j++)
a[i][j] ^= a[k][j];
}
}
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;//无解
if(k < var) return var-k;//自由变元个数
//唯一解,回代
for(int i = var-; i >= ;i--)
{
x[i] = a[i][var];
for(int j = i+;j < var;j++)
x[i] ^= (a[i][j] && x[j]);
}
return ;
}
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
}
int start[MAXN],end[MAXN]; int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i = ;i < n;i++)
scanf("%d",&start[i]);
for(int i = ;i < n;i++)
scanf("%d",&end[i]);
init();
equ = var = n;
for(int i = ;i < n;i++)
a[i][i] = ;
int u,v;
while(scanf("%d%d",&u,&v) == )
{
if(u == && v == )break;
a[v-][u-] = ;
}
for(int i = ;i < n;i++)
a[i][n] = (start[i]^end[i]);
int ans = Gauss();
if(ans == -)
printf("Oh,it's impossible~!!\n");
else printf("%d\n",(<<ans));
}
return ;
}
需要步数最少的,要枚举自由变元求解。
/* ***********************************************
Author :kuangbin
Created Time :2013/8/17 19:56:07
File Name :F:\2013ACM练习\专题学习\高斯消元\POJ1681.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//对2取模的01方程组
const int MAXN = ;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数 //返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num = ;
for(k = , col = ; k < equ && col < var ; k++, col++)
{
max_r = k;
for(int i = k+;i < equ;i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col;//这个是自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+;i < equ;i++)
{
if(a[i][col] != )
{
for(int j = col;j < var+;j++)
a[i][j] ^= a[k][j];
}
}
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;//无解
if(k < var) return var-k;//自由变元个数
//唯一解,回代
for(int i = var-; i >= ;i--)
{
x[i] = a[i][var];
for(int j = i+;j < var;j++)
x[i] ^= (a[i][j] && x[j]);
}
return ;
}
int n;
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
equ = n*n;
var = n*n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
{
int t = i*n+j;
a[t][t] = ;
if(i > )a[(i-)*n+j][t] = ;
if(i < n-)a[(i+)*n+j][t] = ;
if(j > )a[i*n+j-][t] = ;
if(j < n-)a[i*n+j+][t] = ;
}
}
void solve()
{
int t = Gauss();
if(t == -)
{
printf("inf\n");
return;
}
else if(t == )
{
int ans = ;
for(int i = ;i < n*n;i++)
ans += x[i];
printf("%d\n",ans);
return;
}
else
{
//枚举自由变元
int ans = 0x3f3f3f3f;
int tot = (<<t);
for(int i = ;i < tot;i++)
{
int cnt = ;
for(int j = ;j < t;j++)
{
if(i&(<<j))
{
x[free_x[j]] = ;
cnt++;
}
else x[free_x[j]] = ;
}
for(int j = var-t-;j >= ;j--)
{
int idx;
for(idx = j;idx < var;idx++)
if(a[j][idx])
break;
x[idx] = a[j][var];
for(int l = idx+;l < var;l++)
if(a[j][l])
x[idx] ^= x[l];
cnt += x[idx];
}
ans = min(ans,cnt);
}
printf("%d\n",ans);
}
}
char str[][];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init();
for(int i = ;i < n;i++)
{
scanf("%s",str[i]);
for(int j = ;j < n;j++)
{
if(str[i][j] == 'y')
a[i*n+j][n*n] = ;
else a[i*n+j][n*n] = ;
}
}
solve();
}
return ;
}
数据范围很小,随便搞,也是要枚举自由变元。。。。这题用高斯消元真是杀鸡用牛刀了
/* ***********************************************
Author :kuangbin
Created Time :2013/8/17 20:53:13
File Name :F:\2013ACM练习\专题学习\高斯消元\POJ1753.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//对2取模的01方程组
const int MAXN = ;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数 //返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num = ;
for(k = , col = ; k < equ && col < var ; k++, col++)
{
max_r = k;
for(int i = k+;i < equ;i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col;//这个是自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+;i < equ;i++)
{
if(a[i][col] != )
{
for(int j = col;j < var+;j++)
a[i][j] ^= a[k][j];
}
}
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;//无解
if(k < var) return var-k;//自由变元个数
//唯一解,回代
for(int i = var-; i >= ;i--)
{
x[i] = a[i][var];
for(int j = i+;j < var;j++)
x[i] ^= (a[i][j] && x[j]);
}
return ;
}
int n;
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
equ = n*n;
var = n*n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
{
int t = i*n+j;
a[t][t] = ;
if(i > )a[(i-)*n+j][t] = ;
if(i < n-)a[(i+)*n+j][t] = ;
if(j > )a[i*n+j-][t] = ;
if(j < n-)a[i*n+j+][t] = ;
}
}
const int INF = 0x3f3f3f3f;
int solve()
{
int t = Gauss();
if(t == -)
{
return INF;
}
else if(t == )
{
int ans = ;
for(int i = ;i < n*n;i++)
ans += x[i];
return ans;
}
else
{
//枚举自由变元
int ans = INF;
int tot = (<<t);
for(int i = ;i < tot;i++)
{
int cnt = ;
for(int j = ;j < t;j++)
{
if(i&(<<j))
{
x[free_x[j]] = ;
cnt++;
}
else x[free_x[j]] = ;
}
for(int j = var-t-;j >= ;j--)
{
int idx;
for(idx = j;idx < var;idx++)
if(a[j][idx])
break;
x[idx] = a[j][var];
for(int l = idx+;l < var;l++)
if(a[j][l])
x[idx] ^= x[l];
cnt += x[idx];
}
ans = min(ans,cnt);
}
return ans;
}
}
char str[][];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
n = ;
for(int i = ;i < ;i++)
scanf("%s",str[i]);
init();
for(int i = ;i < ;i++)
for(int j = ;j < ;j++)
{
if(str[i][j] == 'b')a[i*+j][] = ;
else a[i*+j][] = ;
}
int ans1 = solve();
init();
for(int i = ;i < ;i++)
for(int j = ;j < ;j++)
{
if(str[i][j] == 'b')a[i*+j][] = ;
else a[i*+j][] = ;
}
int ans2 = solve();
if(ans1 == INF && ans2 == INF)
printf("Impossible\n");
else printf("%d\n",min(ans1,ans2));
return ;
}
一维的了,更简单的还是枚举比较好。
高斯消元随便搞
/* ***********************************************
Author :kuangbin
Created Time :2013/8/17 21:53:09
File Name :F:\2013ACM练习\专题学习\高斯消元\POJ3185.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//对2取模的01方程组
const int MAXN = ;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free_x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数 //返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num = ;
for(k = , col = ; k < equ && col < var ; k++, col++)
{
max_r = k;
for(int i = k+;i < equ;i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col;//这个是自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+;i < equ;i++)
{
if(a[i][col] != )
{
for(int j = col;j < var+;j++)
a[i][j] ^= a[k][j];
}
}
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;//无解
if(k < var) return var-k;//自由变元个数
//唯一解,回代
for(int i = var-; i >= ;i--)
{
x[i] = a[i][var];
for(int j = i+;j < var;j++)
x[i] ^= (a[i][j] && x[j]);
}
return ;
}
void init()
{
memset(a,,sizeof(a));
memset(x,,sizeof(x));
equ = ;
var = ;
for(int i = ;i < ;i++)
{
a[i][i] = ;
if(i > ) a[i-][i] = ;
if(i < )a[i+][i] = ;
}
}
void solve()
{
int t = Gauss();
if(t == -)
{
printf("inf\n");
return;
}
else if(t == )
{
int ans = ;
for(int i = ;i < ;i++)
ans += x[i];
printf("%d\n",ans);
return;
}
else
{
//枚举自由变元
int ans = 0x3f3f3f3f;
int tot = (<<t);
for(int i = ;i < tot;i++)
{
int cnt = ;
for(int j = ;j < t;j++)
{
if(i&(<<j))
{
x[free_x[j]] = ;
cnt++;
}
else x[free_x[j]] = ;
}
for(int j = var-t-;j >= ;j--)
{
int idx;
for(idx = j;idx < var;idx++)
if(a[j][idx])
break;
x[idx] = a[j][var];
for(int l = idx+;l < var;l++)
if(a[j][l])
x[idx] ^= x[l];
cnt += x[idx];
}
ans = min(ans,cnt);
}
printf("%d\n",ans);
}
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
init();
for(int i = ;i < ;i++)
scanf("%d",&a[i][]);
solve();
return ;
}
专题:
高斯消元解方程:
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=29538#overview
POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题的更多相关文章
- POJ 1681 Painter's Problem(高斯消元+枚举自由变元)
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...
- POJ 1681 Painter's Problem 【高斯消元 二进制枚举】
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total ...
- POJ 1830 开关问题(高斯消元求解的情况)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8714 Accepted: 3424 Description ...
- poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...
- POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)
题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...
- POJ 1753 Flip game ( 高斯消元枚举自由变量)
题目链接 题意:给定一个4*4的矩阵,有两种颜色,每次反转一个颜色会反转他自身以及上下左右的颜色,问把他们全变成一种颜色的最少步数. 题解:4*4的矩阵打表可知一共有四个自由变元,枚举变元求最小解即可 ...
- poj 1753 Flip Game 高斯消元
题目链接 4*4的格子, 初始为0或1, 每次翻转一个会使它四周的也翻转, 求翻转成全0或全1最少的步数. #include <iostream> #include <vector& ...
- POJ 2065 高斯消元求解问题
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元)
[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...
随机推荐
- css的背景图片background
1.使用背景图片的标签定设置宽高,没有设置的话,也需要用内容来撑开标签. 2.如果对同一个标签分开设置背景图片和颜色,背景颜色一定要写在背景图片后面,不然会被覆盖 <!DOCTYPE html& ...
- 在flask中返回requests响应
在flask服务端,有时候需要使用requests请求其他url,并将响应返回回去.查阅了flask文档,About Responses,可以直接构造响应结果进行返回. If a tuple is r ...
- 当array_filter函数的callback留空时 他会过滤掉所有键值为false的键
当array_filter函数的callback留空时 他会过滤掉所有键值为false的键
- vue数据传递--我有特殊的实现技巧
最近碰到了比较多的关于vue的eventBus的问题,之前定技术选型的时候也被问到了,vuex和eventBus的使用范围.所以简单的写一下.同时有一种特殊的实现方案. 有这么几种数据传递方式,vue ...
- 控制终端tcgetattr函数与tcsetattr函数
tcgetattr(fd,&oldios); //获得与终端相关的参数,参数保存在oldios中 newios.c_cflag = nSpeed | CS8 | CLOCAL | CREAD; ...
- POJ - 1251
Jungle Roads Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20024 Accepted: 9234 Des ...
- 二、python框架相关知识体系
Django框架 1.django框架.flask框架和Tornado框架的区别? django框架,内置组件多,自身功能强大,是一个大而全的框架,ORM.Admin.中间件.Form.ModelFr ...
- hdu 1847(SG函数,巴什博弈)
Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- TEC-2几条微指令的微码说明 & TEC-2微程序运行测试步骤
个人理解,不保证完全正确…… 给正在被何朝东虐的,以及将来会被何朝东虐的同胞们………… 祈祷软院赶快更新课程让下一代逃脱TEC-2魔爪,monitor里那1994的年份真是看得人一口老血…… 微码说明 ...
- LoadRunner 中的 Unique Number 参数类型小结