E. Rooks and Rectangles

Time Limit: 1 Sec  Memory Limit: 256 MB

题目连接

http://codeforces.com/problemset/problem/524/E

Description

Polycarpus has a chessboard of size n × m, where k rooks are placed. Polycarpus hasn't yet invented the rules of the game he will play. However, he has already allocated q rectangular areas of special strategic importance on the board, they must be protected well. According to Polycarpus, a rectangular area of ​​the board is well protected if all its vacant squares can be beaten by the rooks that stand on this area. The rooks on the rest of the board do not affect the area's defense. The position of the rooks is fixed and cannot be changed. We remind you that the the rook beats the squares located on the same vertical or horizontal line with it, if there are no other pieces between the square and the rook. Help Polycarpus determine whether all strategically important areas are protected.

Input

The first line contains four integers n, m, k and q (1 ≤ n, m ≤ 100 000, 1 ≤ k, q ≤ 200 000) — the sizes of the board, the number of rooks and the number of strategically important sites. We will consider that the cells of the board are numbered by integers from 1 to n horizontally and from 1 to m vertically. Next k lines contain pairs of integers "x y", describing the positions of the rooks (1 ≤ x ≤ n, 1 ≤ y ≤ m). It is guaranteed that all the rooks are in distinct squares. Next q lines describe the strategically important areas as groups of four integers "x1 y1 x2 y2" (1 ≤ x1 ≤ x2 ≤ n, 1 ≤ y1 ≤ y2 ≤ m). The corresponding rectangle area consists of cells (x, y), for which x1 ≤ x ≤ x2, y1 ≤ y ≤ y2. Strategically important areas can intersect of coincide.

Output

Print q lines. For each strategically important site print "YES" if it is well defended and "NO" otherwise.

Sample Input

4 3 3 3
1 1
3 2
2 3
2 3 2 3
2 1 3 3
1 2 2 3

Sample Output

YES
YES
NO

HINT

Picture to the sample: For the last area the answer is "NO", because cell (1, 2) cannot be hit by a rook.

题意

给你,n个矩形,判断这个n个矩形是否被在矩形内的车全部覆盖

题解:

维护两个数据结构分别表示前i行里第几列是否被覆盖到和前i列里第j行是否被覆盖到

 
然后询问的时候就相当于查询第i1到第i2行这个区间的线段树中第j1到第j2列中最小的覆盖数是否为0,如果是就说明未被覆盖

思想比较麻烦,但是写起来特别快
 

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 500001
#define mod 10007
#define eps 1e-9
//const int inf=0x7fffffff; //无限大
const int inf=0x3f3f3f3f;
/*
inline ll read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int buf[10];
inline void write(int i) {
int p = 0;if(i == 0) p++;
else while(i) {buf[p++] = i % 10;i /= 10;}
for(int j = p-1; j >=0; j--) putchar('0' + buf[j]);
printf("\n");
}
*/
//**************************************************************************************
int a[maxn],n,m,k,q;;
struct node
{
int x,y;
};
node p[maxn];
struct pp
{
int x1,y1,x2,y2,id;
};
pp que[maxn]; void updata(int xx, int L, int R, int x, int val)
{
if(L==R)
{
a[xx]=val;
return;
}
int M=(L+R)>>;
if(x <= M)
updata(xx*,L,M,x,val);
else
updata(xx*+,M+,R,x,val);
a[xx]=min(a[xx*], a[xx*+]);
}
int query(int x, int L, int R, int l, int r)
{
if(l<=L&&R<=r)
return a[x];
int M=(L+R)>>;
if(r<=M)
return query(x*,L,M,l,r);
else if(l>M)
return query(x*+,M+,R,l,r);
else
return min(query(x*,L,M,l,r), query(x*+,M+,R,l,r));
}
bool cmp(node x,node y)
{
return x.x<y.x;
}
bool cmp1(pp x,pp y)
{
return x.x2<y.x2;
}
int ans[maxn];
void solve()
{
memset(a,,sizeof(a));
int pic=;
for(int i=;i<q;i++)
{
while(pic<k&&p[pic].x<=que[i].x2)
{
updata(,,m,p[pic].y,p[pic].x);
pic++;
}
if(query(,,m,que[i].y1,que[i].y2)>=que[i].x1)
ans[que[i].id]=;
}
}
void change()
{
swap(n,m);
for(int i=;i<k;i++)
swap(p[i].x,p[i].y);
sort(p,p+k,cmp);
for(int i=;i<q;i++)
{
swap(que[i].x1,que[i].y1);
swap(que[i].x2,que[i].y2);
}
sort(que,que+q,cmp1);
}
int main()
{ scanf("%d%d%d%d",&n,&m,&k,&q);
for(int i=;i<k;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p,p+k,cmp);
for(int i=;i<q;i++)
{
scanf("%d%d%d%d",&que[i].x1,&que[i].y1,&que[i].x2,&que[i].y2);
que[i].id=i;
}
sort(que,que+q,cmp1);
solve();
change();
solve();
for(int i=;i<q;i++)
{
if(ans[i])
puts("YES");
else
puts("NO");
}
}

VK Cup 2015 - Round 1 E. Rooks and Rectangles 线段树 定点修改,区间最小值的更多相关文章

  1. VK Cup 2015 - Round 1 -E. Rooks and Rectangles 线段树最值+扫描线

    题意: n * m的棋盘, k个位置有"rook"(车),q次询问,问是否询问的方块内是否每一行都有一个车或者每一列都有一个车? 满足一个即可 先考虑第一种情况, 第二种类似,sw ...

  2. Codeforces Round VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM 暴力出奇迹!

    VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM Time Lim ...

  3. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) E. Correcting Mistakes 水题

    E. Correcting Mistakes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...

  4. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) B. Work Group 树形dp

    题目链接: http://codeforces.com/problemset/problem/533/B B. Work Group time limit per test2 secondsmemor ...

  5. VK Cup 2015 - Round 2 E. Correcting Mistakes —— 字符串

    题目链接:http://codeforces.com/contest/533/problem/E E. Correcting Mistakes time limit per test 2 second ...

  6. Codeforces 524E Rooks and Rectangles 线段树

    区域安全的check方法就是, 每行都有哨兵或者每列都有哨兵,然后我们用y建线段树, 维护在每个y上的哨兵的x的最值就好啦. #include<bits/stdc++.h> #define ...

  7. VK Cup 2012 Round 3 (Unofficial Div. 2 Edition)

    VK Cup 2012 Round 3 (Unofficial Div. 2 Edition) 代码 VK Cup 2012 Round 3 (Unofficial Div. 2 Edition) A ...

  8. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 菜鸡只会ABC!

    Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 全场题解 菜鸡只会A+B+C,呈上题解: A. Bear and ...

  9. HDU 5475(2015 ICPC上海站网络赛)--- An easy problem(线段树点修改)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5475 Problem Description One day, a useless calculato ...

随机推荐

  1. python中赋值、浅拷贝、深拷贝详解(转)

    一.赋值 >>> a = [1, 2, 3]>>> b = a>>> print(id(a), id(b), sep='\n')139701469 ...

  2. python开发规范(转载)

    转载自http://www.cnblogs.com/wangcp-2014/p/4838952.html 目录 代码布局 1.1 缩进 1.2 表达式和语句中的空格 1.3 行的最大长度 1.4 空行 ...

  3. 70.如何在xilinx SDK中显示行号

    Window→preferences→editor→test editor 对ecilpse的通用方法 打开Eclipse软件,在菜单中选择窗口——首选项,打开新的窗口. 在新的窗口中依次选择常规—— ...

  4. 获取网站所有的url正则表达式

    C# string pattern1 = @"(?is)<[^>]*?src=(['""\s]?)(?<src>[^'""\s ...

  5. ACM ICPC Kharagpur Regional 2017

    ACM ICPC Kharagpur Regional 2017 A - Science Fair 题目描述:给定一个有\(n\)个点,\(m\)条无向边的图,其中某两个点记为\(S, T\),另外标 ...

  6. Linux系统调优及安全设置

    1.关闭SELinux #临时关闭 setenforce 0 #永久关闭 vim /etc/selinux/config SELINUX=disabled 2.设定运行级别为3 #设定运行级别 vim ...

  7. Linux内核的三种调度策略

    一 Linux内核的三种调度策略:   1,SCHED_OTHER 分时调度策略, 2,SCHED_FIFO实时调度策略,先到先服务.一旦占用cpu则一直运行.一直运行直到有更高优先级任务到达或自己放 ...

  8. 浅谈BeanUtils的拷贝,深度克隆

    1.BeanUtil本地简单测试在项目中由于需要对某些对象进行深度拷贝然后进行持久化操作,想到了apache和spring都提供了BeanUtils的深度拷贝工具包,自己写了几个Demo做测试,定义了 ...

  9. html学习-DOM操作

    1.dom介绍 文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关 ...

  10. es6 class 中 constructor 方法 和 super

    首先,ES6 的 class 属于一种“语法糖”,所以只是写法更加优雅,更加像面对对象的编程,其思想和 ES5 是一致的. <1>constructor function Point(x, ...