基于winner 滤波平稳降噪效果
https://en.wikipedia.org/wiki/Wiener_filter
Wiener filter solutions
The Wiener filter problem has solutions for three possible cases: one where a noncausal filter is acceptable (requiring an infinite amount of both past and future data), the case where a causal filter is desired (using an infinite amount of past data), and the finite impulse response (FIR) case where a finite amount of past data is used. The first c
ase is simple to solve but is not suited for real-time applications. Wiener's main accomplishment was solving the case where the causality requirement is in effect, and in an appendix of Wiener's book Levinson gave the FIR solution.
Noncausal solution
Where
are spectra. Provided that
is optimal, then the minimum mean-square error equation reduces to
and the solution
is the inverse two-sided Laplace transform of
.
Causal solution
where
consists of the causal part of
(that is, that part of this fraction having a positive time solution under the inverse Laplace transform)
is the causal component of
(i.e., the inverse Laplace transform of
is non-zero only for
)
is the anti-causal component of
(i.e., the inverse Laplace transform of
is non-zero only for
)
This general formula is complicated and deserves a more detailed explanation. To write down the solution
in a specific case, one should follow these steps:[2]
- Start with the spectrum
in rational form and factor it into causal and anti-causal components:
where
contains all the zeros and poles in the left half plane (LHP) and
contains the zeroes and poles in the right half plane (RHP). This is called the Wiener–Hopf factorization. - Divide
by
and write out the result as a partial fraction expansion. - Select only those terms in this expansion having poles in the LHP. Call these terms
. - Divide
by
. The result is the desired filter transfer function
.
原始文件,环境噪音已经很弱了

逐帧实时维纳滤波后

基于winner 滤波平稳降噪效果的更多相关文章
- 基于粒子滤波的物体跟踪 Particle Filter Object Tracking
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...
- 基于GPUImage的实时美颜滤镜
1.背景 前段时间由于项目需求,做了一个基于GPUImage的实时美颜滤镜.现在各种各样的直播.视频App层出不穷,美颜滤镜的需求也越来越多.为了回馈开源,现在我把它放到了GitHub https:/ ...
- 【目标跟踪】相关滤波算法之MOSSE
简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...
- 目标跟踪之粒子滤波---Opencv实现粒子滤波算法
目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方 ...
- Canny边缘检测算法(基于OpenCV的Java实现)
目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...
- Analysis of Two-Channel Generalized Sidelobe Canceller (GSC) With Post-Filtering
作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Co ...
- 论文阅读:Siam-RPN
摘要 Siam-RPN提出了一种基于RPN的孪生网络结构.由孪生子网络和RPN网络组成,它抛弃了传统的多尺度测试和在线跟踪,从而使得跟踪速度非常快.在VOT实时跟踪挑战上达到了最好的效果,速度最高16 ...
- 声学回声消除(Acoustic Echo Cancellation)
回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声.一些回声是必要的,比如剧院里的音乐回声以及延迟时间较短的房间回声:而大多数回声会造成负面影响,比如在有线或者无线通信时重复听到自 ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
随机推荐
- DNS简析
IntroductionName Server架构分层管理机制分层查询机制Name Server之间的Master-Slave架构DDNS底层协议配置文件/etc/hosts/etc/resov.co ...
- FineUI(专业版)实现百变通知框(无JavaScript代码)!
博客园已经越来越不公正了,居然说我这篇文章没有实质的内容!! 我其实真的想问哪些通篇几十个字,没任何代码和技术分享,嚷嚷着送书的文章的就能雄霸博客园首页几天,我这篇文章偏偏就为管理员所容不下. 其实我 ...
- 一个小时快速搭建微信小程序教程
「小程序」这个划时代的产品发布快一周了,互联网技术人都在摩拳擦掌,跃跃欲试.可是小程序目前还在内测,首批只发放了 200 个内测资格(泪流满面).本以为没有 AppID 这个月就与小程序无缘了,庆幸的 ...
- C#错过的10年
不知不觉,c#已经诞生n年了,人生有几个十年?c#就浪费了整整一个十年. 这十年里面,电脑发展缓慢,而服务端和手机发展迅速,这是一个移动和后端化的十年,而这个方向,正正是c#没有关注到的,c#把注意力 ...
- JavaScript----Js操控-HTML5 <progress> 标签
Js操控----HTML5 <progress> 标签 简单模拟下下载进度跑条 <h4>加载进度</h4> <input type="button& ...
- 如何解决wow.js与fullpage的兼容性
项目需要做到全屏显示的同时还需要做到实时执行动画.但是发现在使用fullpage之后,wow.js(不知道这个是啥的点击这里)不起作用. 找了诸多资料,解决方法如下: $('#fullpage').f ...
- 教你一招:Excel中使用MID函数获取身份证中的出生年月日
MID字符串函数,作用是从一个字符串中截取出指定数量的字符 MID(text, start_num, num_chars) text被截取的字符 start_num从左起第几位开始截取(用数字表达 ...
- 通用PE工具箱 4.0精简优化版
通用PE工具箱 4.0精简优化版 经用过不少 WinPE 系统,都不是很满意,普遍存在篡改主页.添加广告链接至收藏夹.未经允许安装推广软件等流氓行为,还集成了诸多不常用的工具,令人头疼不已.那么今天给 ...
- Pjax调用
$.pjax({container:'#content_center',url:href,data:data}); $(document).on('pjax:send', function() {// ...
- Python学习笔记——元组
1.创建一个元组并给它赋值 >>> aTuple = (123,'abc',4.56,['inner','tuple'],7-9j) >>> aTuple (123 ...



