Luogu5540 最小乘积生成树

题目链接:洛谷

题目描述:对于一个\(n\)个点\(m\)条边的无向连通图,每条边有两个边权\(a_i,b_i\),求使\((\sum a_i)\times (\sum b_i)\)最小的生成树。

数据范围:\(n\le 200,m\le 10000,a_i,b_i\le 255\)

这题是一道非常妙的计算几何题目。

我们对于每个生成树,用\((\sum a_i,\sum b_i)\)这个二维平面上的点来表示它,那么就是求所有点中横坐标乘纵坐标的最小值。

画画图就可以发现,答案只有可能在下凸包上,为什么呢?

因为如果\(C\)在线段\(AB\)上方,其中\(x_Ay_A=x_By_B\),因为反比例函数下凸,所以\(x_Cy_C>x_Ay_A\)。

但是生成树可能有很多个,怎么得到下凸包上的点呢?

Step1 求最靠近\(x,y\)轴的两个点\(A,B\)

为什么呢?因为\(A,B\)两个点必定在下凸包上面。令\(w_i=a_i\)或\(b_i\)用最小生成树求\(A,B\)。

Step2 求\(C\)在直线\(AB\)下方且\(S_{\Delta ABC}\)最大

为什么呢?因为\(C\)点必定在下凸包上面,否则它不是最大的点。我们发现

\[\begin{aligned}
-\frac{1}{2}S_{\Delta ABC}&=\overrightarrow{AB}\times \overrightarrow{AC} \\
&=(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A) \\
&=((x_A-x_B)y_A-(y_A-y_B)x_A)+(x_B-x_A)y_C-(y_B-y_A)x_C
\end{aligned}
\]

令\(w_i=(x_B-x_A)b_i-(y_B-y_A)a_i\)就会得到\(C\)

Step3 将(A,C)和(C,B)代入Step2递归

这样就可以求出下凸包上所有的点。那什么时候终止递归呢?当然就是\(C\)不存在,或者说求出的\(C\)在\(AB\)上方。

时间复杂度为\(O(km\log m)\),其中\(k\)为下凸包上点的个数,在随机数据下不会很大。

#include<bits/stdc++.h>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 10003;
int n, m, a[N], b[N], fa[N];
struct Point {
int x, y;
inline Point(int _x = 0, int _y = 0): x(_x), y(_y){}
inline Point operator - (const Point &o) const {return (Point){x - o.x, y - o.y};}
} A, B, ans(1e9, 1e9);
inline LL cross(Point a, Point b){return (LL) a.x * b.y - (LL) b.x * a.y;}
struct Edge {
int u, v, w, id;
inline bool operator < (const Edge &o) const {return w < o.w;}
} e[N];
inline int getfa(int x){return x == fa[x] ? x : fa[x] = getfa(fa[x]);}
inline Point Kruskal(){
Point res; sort(e + 1, e + m + 1);
for(Rint i = 1;i <= n;i ++) fa[i] = i;
for(Rint i = 1, p = 1;i <= m && p < n;i ++){
int u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v){fa[u] = v; ++ p; res.x += a[e[i].id]; res.y += b[e[i].id];}
}
LL Ans = (LL) ans.x * ans.y, Res = (LL) res.x * res.y;
if(Ans > Res || Ans == Res && ans.x > res.x) ans = res;
return res;
}
inline void solve(Point A, Point B){
for(Rint i = 1;i <= m;i ++) e[i].w = (A.y - B.y) * a[e[i].id] - (A.x - B.x) * b[e[i].id]; Point C = Kruskal();
if(cross(B - A, C - A) >= 0) return;
solve(A, C); solve(C, B);
}
int main(){
scanf("%d%d", &n, &m);
for(Rint i = 1;i <= m;i ++) scanf("%d%d%d%d", &e[i].u, &e[i].v, a + i, b + i), ++ e[i].u, ++ e[i].v, e[i].id = i;
for(Rint i = 1;i <= m;i ++) e[i].w = a[e[i].id]; Point A = Kruskal();
for(Rint i = 1;i <= m;i ++) e[i].w = b[e[i].id]; Point B = Kruskal();
solve(A, B); printf("%d %d", ans.x, ans.y);
}

Luogu5540 最小乘积生成树的更多相关文章

  1. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  2. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  3. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  4. 【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)

    今天考试的时候果然题目太难于是我就放弃了……转而学习了一下最小乘积生成树. 最小乘积生成树定义: (摘自网上一篇博文). 我们主要解决的问题就是当k = 2时,如何获得最小的权值乘积.我们注意到一张图 ...

  5. Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)

    问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...

  6. bzoj2395 [Balkan 2011]Timeismoney(最小乘积生成树+计算几何)

    题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可 ...

  7. BZOJ2395 [Balkan 2011]Timeismoney 【最小乘积生成树】

    题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面 ...

  8. P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】

    正题 题目链接:https://www.luogu.com.cn/problem/P5540 题目大意 给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化 ...

  9. bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...

随机推荐

  1. redis集合数据类型---SET

    一.概述 redis的set是string类型的无序集合 集合成员是唯一的,这就意味着集合中不能出现重复的数据. 集合中最大的成员数为2^32-1(4294967295,每个集合可存储40多亿个成员) ...

  2. MQ与logstash实现ES与数据库同步区别

    Logstash 实现ES 与数据库同步: 使用定时器(使用sql 定时的去查询数据进行同步).实现方式比较简单. MQ 实现 ES 与数据库同步: 实时性,消息放到MQ中,消费者会自动的消费,复杂性 ...

  3. Go 操作 Mysql(二)

    查询数据方法回顾整理 上一篇博客中,主要是快速过了一遍 demo 代码和 DB 类型对象中方法的使用 在整理查询数据方法的时候,使用了 Query() 方法,其实 sqlx 还提供了 QueryRow ...

  4. Python——pip的安装与使用

    pip 是 Python 包管理工具,该工具提供了对Python 包的查找.下载.安装.卸载的功能.目前如果你在 python.org 下载最新版本的安装包,则是已经自带了该工具.Python 2.7 ...

  5. 【转载】C#使用Except方法求取两个List集合的差集数据

    在C#语言的编程开发中,针对List集合的运算有时候需要计算两个List集合的差集数据,集合的差集是取在该集合中而不在另一集合中的所有的项.A集合针对B集合的差集数据指的是所有在A集合但不在B集合的元 ...

  6. 【已解决】极速迅雷win10闪退解决方案

    [已解决]极速迅雷win10闪退解决方案 本文作者:天析 作者邮箱:2200475850@qq.com 发布时间: Wed, 17 Jul 2019 18:01:00 +0800 在吾爱下载了个极速迅 ...

  7. 时间都去哪儿了?开源一个统计iPhone上App运行时间和打开次数的小工具【iOS8已失效】

    如今,大家每天都有大量时间花在手机上,但是,大家有没有想过自己的时间都花在哪些App上了呢?相信很多人都有这样的需求,不过iOS系统本身并不能显示每个App的运行时间和次数,因此,本人写了这样一个小工 ...

  8. Elasticsearch7

    elasticsearch 由来 点击进入 elasticsearch 基本概念 点击进入 elasticsearch 安装 点击进入 elasticsearch 增删改查 点击进入 elastics ...

  9. Cknife流量分析

    本文首发:https://<img src=1 onerror=\u006coc\u0061tion='j\x61v\x61script:\x61lert\x281\x29'>testde ...

  10. Flask笔记(一)

    first_flask_project.py # 从flask这个包中导入Flask这个类 # Flask这个类是项目的核心,以后很多操作都是基于这个类的对象 # 注册url.注册蓝图等都是基于这个类 ...