【转载】softmax的log似然代价函数(求导过程)
全文转载自:softmax的log似然代价函数(公式求导)
在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数。这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解。同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好。
1. softmax函数及其求导
softmax的函数公式如下:
其中,表示第L层(通常是最后一层)第j个神经元的输入,
表示第L层第j个神经元的输出,
表示自然常数。注意看,
表示了第L层所有神经元的输入之和。
softmax函数最明显的特点在于:它把每个神经元的输入占当前层所有神经元输入之和的比值,当作该神经元的输出。这使得输出更容易被解释:神经元的输出值越大,则该神经元对应的类别是真实类别的可能性更高。
另外,softmax不仅把神经元输出构造成概率分布,而且还起到了归一化的作用,适用于很多需要进行归一化处理的分类问题。
由于softmax在ANN算法中的求导结果比较特别,分为两种情况。希望能帮助到正在学习此类算法的朋友们。求导过程如下所示:
2. softmax配合log似然代价函数训练ANN
在上一篇博文“交叉熵代价函数”中讲到,二次代价函数在训练ANN时可能会导致训练速度变慢的问题。那就是,初始的输出值离真实值越远,训练速度就越慢。这个问题可以通过采用交叉熵代价函数来解决。其实,这个问题也可以采用另外一种方法解决,那就是采用softmax激活函数,并采用log似然代价函数(log-likelihood cost function)来解决。
log似然代价函数的公式为:
其中,表示第k个神经元的输出值,
表示第k个神经元对应的真实值,取值为0或1。
我们来简单理解一下这个代价函数的含义。在ANN中输入一个样本,那么只有一个神经元对应了该样本的正确类别;若这个神经元输出的概率值越高,则按照以上的代价函数公式,其产生的代价就越小;反之,则产生的代价就越高。
为了检验softmax和这个代价函数也可以解决上述所说的训练速度变慢问题,接下来的重点就是推导ANN的权重w和偏置b的梯度公式。以偏置b为例:
同理可得:
从上述梯度公式可知,softmax函数配合log似然代价函数可以很好地训练ANN,不存在学习速度变慢的问题。
【转载】softmax的log似然代价函数(求导过程)的更多相关文章
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- PyTorch学习笔记——softmax和log_softmax的区别、CrossEntropyLoss() 与 NLLLoss() 的区别、log似然代价函数
1.softmax 函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 ...
- softmax 损失函数求导过程
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...
- 关于 Softmax 回归的反向传播求导数过程
对于 \(Softmax\) 回归的正向传播非常简单,就是对于一个输入 \(X\) 对每一个输入标量 \(x_i\) 进行加权求和得到 \(Z\) 然后对其做概率归一化. Softmax 示意图 下面 ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- 【机器学习基础】对 softmax 和 cross-entropy 求导
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 ...
- 关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...
- Pytorch Autograd (自动求导机制)
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...
- PAT-乙级-1010. 一元多项式求导 (25)
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一 ...
随机推荐
- fdisk中参数配置说明表
命令 描述 a 设置活动分区标志 b 编辑BSD Unix系统用的磁盘标签 c 设置DOS兼容标志 d 删除分区 l 显示可用的分区类型 m 显示命令选项(帮助) n 添加一个新的分区 o 创建DOS ...
- 【图像处理】DVR H.264视频编码基本知识
视频编码技术基本是由ISO/IEC制定的MPEG-x和ITU-T制定的H.26x两大系列视频编码国际标准的推出.从H.261视频编码建议,到 H.262/3.MPEG-1/2/4等都有一个共同的不断追 ...
- 深入理解C语言-函数指针
函数指针在C++中有着重要的应用,函数的函数名其本质就是代表一个地址,这个地址叫做函数入口,得到这个地址就可以对这个函数进行各种操作. 函数类型基础 函数三要素: 名称.参数.返回值 C语言中的函数有 ...
- 前端CSS实现图片自适应背景大小
<body> <div> <!--背景图片--> <div id="web_bg" style="background-imag ...
- PowerShell .Net整套环境搭建及部署系列
此系列包含一套完整的集群部署,全是个人原创(除第一个是摘抄的),转载请注明出处 其中DFS部分在国内资料极少,且全是重复的,还是外面好些,有问题可以给出解决方案 若内容有不详之处或你也同样被DFS所困 ...
- Stream系列(十)Count方法使用
计数器 视频讲解: https://www.bilibili.com/video/av77905733/ EmployeeTestCase.java package com.example.demo; ...
- SQL SERVER GETDATE() 函数
定义: GETDATE() 函数从 SQL Server 返回当前的时间和日期. 语法: GETDATE() 返回值: datetime型数据 例: 声明:本文是本人查阅网上及书籍等各种资料,再加上 ...
- django 路由层 伪静态网页 虚拟环境 视图层
路由层 无名分组 有名分组 反向解析 路由分发 名称空间 伪静态网页 虚拟环境 视图层 JsonResponse FBV与CBV 文件上传 项目urls.py下面 from app01 import ...
- Linux命令-文件管理篇-cat
1.cat 说明 cat 是一个文本文件查看和连接工具.查看一个文件的内容,用cat比较简单,就是cat 后面直接接文件名. 2.使用权限 所有使用者 <!-- more --> 3.ca ...
- JavaScript例子2-使一个特定的表格隔行变色
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...