【转载】softmax的log似然代价函数(求导过程)
全文转载自:softmax的log似然代价函数(公式求导)
在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数。这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解。同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好。
1. softmax函数及其求导
softmax的函数公式如下:
其中,表示第L层(通常是最后一层)第j个神经元的输入,
表示第L层第j个神经元的输出,
表示自然常数。注意看,
表示了第L层所有神经元的输入之和。
softmax函数最明显的特点在于:它把每个神经元的输入占当前层所有神经元输入之和的比值,当作该神经元的输出。这使得输出更容易被解释:神经元的输出值越大,则该神经元对应的类别是真实类别的可能性更高。
另外,softmax不仅把神经元输出构造成概率分布,而且还起到了归一化的作用,适用于很多需要进行归一化处理的分类问题。
由于softmax在ANN算法中的求导结果比较特别,分为两种情况。希望能帮助到正在学习此类算法的朋友们。求导过程如下所示:
2. softmax配合log似然代价函数训练ANN
在上一篇博文“交叉熵代价函数”中讲到,二次代价函数在训练ANN时可能会导致训练速度变慢的问题。那就是,初始的输出值离真实值越远,训练速度就越慢。这个问题可以通过采用交叉熵代价函数来解决。其实,这个问题也可以采用另外一种方法解决,那就是采用softmax激活函数,并采用log似然代价函数(log-likelihood cost function)来解决。
log似然代价函数的公式为:
其中,表示第k个神经元的输出值,
表示第k个神经元对应的真实值,取值为0或1。
我们来简单理解一下这个代价函数的含义。在ANN中输入一个样本,那么只有一个神经元对应了该样本的正确类别;若这个神经元输出的概率值越高,则按照以上的代价函数公式,其产生的代价就越小;反之,则产生的代价就越高。
为了检验softmax和这个代价函数也可以解决上述所说的训练速度变慢问题,接下来的重点就是推导ANN的权重w和偏置b的梯度公式。以偏置b为例:
同理可得:
从上述梯度公式可知,softmax函数配合log似然代价函数可以很好地训练ANN,不存在学习速度变慢的问题。
【转载】softmax的log似然代价函数(求导过程)的更多相关文章
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- PyTorch学习笔记——softmax和log_softmax的区别、CrossEntropyLoss() 与 NLLLoss() 的区别、log似然代价函数
1.softmax 函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 ...
- softmax 损失函数求导过程
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...
- 关于 Softmax 回归的反向传播求导数过程
对于 \(Softmax\) 回归的正向传播非常简单,就是对于一个输入 \(X\) 对每一个输入标量 \(x_i\) 进行加权求和得到 \(Z\) 然后对其做概率归一化. Softmax 示意图 下面 ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- 【机器学习基础】对 softmax 和 cross-entropy 求导
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 ...
- 关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...
- Pytorch Autograd (自动求导机制)
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...
- PAT-乙级-1010. 一元多项式求导 (25)
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一 ...
随机推荐
- Vue 使用eventBus 实现兄弟组件间的通信
实现方式: 主要是在相互通信的兄弟组件之中,都引入一个新的vue实例,然后通过分别调用这个实例的事件触发事件广播 和监听来实现通信和参数传递. 需求: a页面tree的增删改后,数据还是之前的老数据 ...
- 纹理特征描述之自相关函数法 纹理粗糙性与自相关函数的扩展成正比 matlab代码实现
图像中通常采用自相关函数作为纹理测度 自相关函数的定义为: 调用自定义函数 zxcor()对砖墙面和大理石面纹理进行分析: 自定义函数 zxcor(): function [epsilon,eta ...
- 【HTML】常用的标签学习(2)
现在的使用的html语言都是h5,但是h5也是从h4继承发展来的,所以h4的标签我们也要学习,然后加上h5新增的标签,那么html这门语言才算学习完毕.上次学习了h4的一些常用标签,今天学习h4剩下的 ...
- 工具 --- Git
Git介绍 Git是目前世界上最先进的分布式版本控制系统. git 诞生: git诞生之前当时的CVS和SVN这些集中式的版本控制系统不但速度慢,而且必须联网才可以使用.由于代码量越来越多,linus ...
- git 使用详解
Git学习文档: http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 git init ...
- POJ 3207 【2-SAT入门题 + 强连通分量】
这道题是我对于2-SAT问题的入门题:http://poj.org/problem?id=3207 一篇非常非常非常好的博客,很详细,认真看一遍差不多可以了解个大概:https://blog.csdn ...
- 区间DP(入门)括号匹配
https://www.nitacm.com/problem_show.php?pid=8314 思路:类似于https://blog.csdn.net/MIKASA3/article/details ...
- Linux就该这么学——重要的环境变量
Linux命令执行过程 1.判断用户是否以绝对路径或相对路径的方式输入命令(如 /bin/ls) ,如果是的话则直接执行 2.Linux系统检查用户输入的命令是否为”别名命令”. 即用一个自定义的命令 ...
- Codeforces 1237E. Balanced Binary Search Trees
传送门 这一题是真的坑人,时间空间都在鼓励你用 $NTT$ 优化 $dp$...(但是我并不会 $NTT$) 看到题目然后考虑树形 $dp$ ,设 $f[i][0/1]$ 表示 $i$ 个节点的树,根 ...
- 关闭钩子(shutdown hook)的作用以及在Tomcat中的使用
在很多实际应用环境中,当用户关了应用程序时,需要做一些善后清理工作,但问题是,用户有时并不会按照推荐的方法关闭应用程序,很有可能不做清理工作,例如在Tomcat的部署应用中,通过实例化一个Server ...