xgzc— math 专题训练(二)
费马小定理&欧拉定理
费马小定理:
如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\)
欧拉定理:
当\(a\)与\(n\)互质时,\(a^b \equiv a^{b\%\phi(n)} \pmod n\)
扩展欧拉定理:
\begin{cases}
a^b\pmod n (b<\phi(n))\\
a^{b\%\phi(n)+\phi(n)\pmod n (b\ge\phi(n))}\\
\end{cases}
\]
BSGS
求方程\(a^x\equiv b\pmod p\)(\(a\)与\(p\)互质)的解
取\(m=\lceil \sqrt p\rceil\),设\(x = m*i-j\)
那么易知,\((a^m)^i\equiv b*a^j\pmod p\)
我们可以把右边的全部丢到\(map\)里,然后枚举左边的,看看\(map\)中有没有
map<int, int> M;
int BSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M[t * b % p] = i;
for (int i = 1, s = t; i <= m + 1; i++, s = t * s % p) {
map<int, int> :: iterator it = M.find(s);
if (it == M.end()) continue;
return m * i - (it->second);
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &p, &a, &b) != EOF) {
int ans = BSGS(a, b, p);
if (ans == -1) puts("no solution");
else printf("%d\n", ans);
}
return 0;
}
EXBSGS
当\(a\)与\(p\)不互质时,就不能除过去。
考虑,\(a^x=p*z+b\)
我们取\(d = gcd(a,p)\)
如果\(b\)不是\(d\)的倍数显然无解
然后整体除\(d\)得到\(\frac{a}{d}a^{x-1}=\frac{p}{d}*z+\frac{b}{d}\)
显然可以递归处理。。
记录一下系数
然后最后回带一下即可。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int Mod = 1e5 + 7;
int gcd(int x, int y) {
return !y ? x : gcd(y, x % y);
}
struct Hash {
struct node {
int a, b, nxt;
} A[1000010];
int lst[Mod], tot;
void clear() { memset(lst, 0, sizeof(lst)); tot = 0; }
void add(int a, int b, int S) {
A[++tot] = (node) {a, b, lst[S]};
lst[S] = tot;
}
void insert(int a, int b) { add(a, b, a % Mod); }
int find(int x) {
for (int i = lst[x % Mod]; i; i = A[i].nxt)
if (A[i].a == x) return A[i].b;
return -1;
}
} M;
int exBSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
int d, k = 0, s = 1;
while ((d = gcd(a, p)) > 1) {
if (b % d) { return -1; }
b /= d; p /= d; k++; s = 1ll * s * a / d % p;
if (s == b) { return k; }
}
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M.insert(t * b % p, i);
s = t * s % p;
for (int i = 1; i <= m + 1; i++, s = t * s % p) {
int it = M.find(s); if (it == -1) continue;
return m * i - it + k;
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &a, &p, &b) != EOF) {
if (!a && !b && !p) return 0;
int ans = exBSGS(a, b, p);
if (ans == -1) puts("No Solution");
else printf("%d\n", ans);
}
return 0;
}
exLucas
二次剩余(Cipolla)
xgzc— math 专题训练(二)的更多相关文章
- xgzc— math 专题训练(一)
Lucas定理 当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\) 狄利克雷卷积 定义:\((f*g)(n)= ...
- dp专题训练
****************************************************************************************** 动态规划 专题训练 ...
- DP专题训练之HDU 2955 Robberies
打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...
- Microsoft .Net Remoting系列专题之二
Microsoft .Net Remoting系列专题之二 一.远程对象的激活 在Remoting中有三种激活方式,一般的实现是通过RemotingServices类的静态方法来完成.工作过程事实上是 ...
- 「kuangbin带你飞」专题十二 基础DP
layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...
- 转:【专题十二】实现一个简单的FTP服务器
引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...
- kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)
Treats for the Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7949 Accepted: 42 ...
- kuangbin专题十二 POJ1661 Help Jimmy (dp)
Help Jimmy Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14214 Accepted: 4729 Descr ...
- kuangbin专题十二 HDU1176 免费馅饼 (dp)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- 基于Docker的Kafka部署
一 准备 1.1 安装docker-dompose #部署 sudo curl -L "https://github.com/docker/compose/releases/download ...
- 日志(log4j2)
日志测试java代码如下: package com.learn.test; import org.apache.logging.log4j.LogManager; import org.apache. ...
- 通过Kubeadm搭建Kubernetes集群
历经断断续续学习的两天,终于完成了一个简单k8s集群. 参考 https://www.cnblogs.com/edisonchou/p/aspnet_core_on_k8s_deepstudy_par ...
- Tomcat server.xml port server context 配置
- 括号配对检测 A
括号配对检测 A ...
- 安装Nvida 显示环境
查看是否能正确加载nvidia 驱动 在终端输入 (glxinfo 需要安装mesa-utils) 如果可以正确加载了nvidia驱动 那么在输入的内容中可以看到NVIDIA 字样 如果GPU是Int ...
- Unity使用Resources读取Resources路径下的二进制文件(Binary Data)必须使用 .bytes扩展名
将某二进制文件放在Resources目录下,希望用Resources.Load<TextAsset>的方式读取,发现TextAsset是null 查阅Unity文档得知,使用Resourc ...
- 【微信网页直接下载app】微信跳转-微信浏览器中直接唤起本地浏览器和App
文档传送门:https://github.com/EthanOrange/wechat-redirect demo: http://wxredirect.jslab.fun/call-app
- SPI学习笔记1
SPI 简介 SPI 是英语 Serial Peripheral interface 的缩写,顾名思义就是串行外围设备接口.是 Motorola首先在其 MC68HCXX 系列处理器上定义的. SPI ...
- Ubuntu 手动挂载exfat格式的U盘
1.默认Ubuntu不支持exFat格式的U盘,先要安装支持: sudo apt-get install exfat-fuse 2.挂载磁盘,我选择挂在mnt下面 a.创建挂载目录:sudo mkdi ...