费马小定理&欧拉定理

费马小定理:

如果\(p\)是一个质数,而整数\(a\)不是\(p\)的倍数,\(a^{p-1}\equiv1\pmod p\)

欧拉定理:

当\(a\)与\(n\)互质时,\(a^b \equiv a^{b\%\phi(n)} \pmod n\)

扩展欧拉定理:

\[a^b \equiv
\begin{cases}
a^b\pmod n (b<\phi(n))\\
a^{b\%\phi(n)+\phi(n)\pmod n (b\ge\phi(n))}\\
\end{cases}
\]

BSGS

求方程\(a^x\equiv b\pmod p\)(\(a\)与\(p\)互质)的解

取\(m=\lceil \sqrt p\rceil\),设\(x = m*i-j\)

那么易知,\((a^m)^i\equiv b*a^j\pmod p\)

我们可以把右边的全部丢到\(map\)里,然后枚举左边的,看看\(map\)中有没有


map<int, int> M;
int BSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M[t * b % p] = i;
for (int i = 1, s = t; i <= m + 1; i++, s = t * s % p) {
map<int, int> :: iterator it = M.find(s);
if (it == M.end()) continue;
return m * i - (it->second);
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &p, &a, &b) != EOF) {
int ans = BSGS(a, b, p);
if (ans == -1) puts("no solution");
else printf("%d\n", ans);
}
return 0;
}

EXBSGS

当\(a\)与\(p\)不互质时,就不能除过去。

考虑,\(a^x=p*z+b\)

我们取\(d = gcd(a,p)\)

如果\(b\)不是\(d\)的倍数显然无解

然后整体除\(d\)得到\(\frac{a}{d}a^{x-1}=\frac{p}{d}*z+\frac{b}{d}\)

显然可以递归处理。。

记录一下系数

然后最后回带一下即可。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int Mod = 1e5 + 7;
int gcd(int x, int y) {
return !y ? x : gcd(y, x % y);
}
struct Hash {
struct node {
int a, b, nxt;
} A[1000010];
int lst[Mod], tot;
void clear() { memset(lst, 0, sizeof(lst)); tot = 0; }
void add(int a, int b, int S) {
A[++tot] = (node) {a, b, lst[S]};
lst[S] = tot;
}
void insert(int a, int b) { add(a, b, a % Mod); }
int find(int x) {
for (int i = lst[x % Mod]; i; i = A[i].nxt)
if (A[i].a == x) return A[i].b;
return -1;
}
} M;
int exBSGS(int a, int b, int p) {
if (b == 1 && a) return 0;
int d, k = 0, s = 1;
while ((d = gcd(a, p)) > 1) {
if (b % d) { return -1; }
b /= d; p /= d; k++; s = 1ll * s * a / d % p;
if (s == b) { return k; }
}
M.clear(); int m = ceil(sqrt(p));
LL t = 1;
for (int i = 0; i < m; i++, t = t * a % p) M.insert(t * b % p, i);
s = t * s % p;
for (int i = 1; i <= m + 1; i++, s = t * s % p) {
int it = M.find(s); if (it == -1) continue;
return m * i - it + k;
}
return -1;
}
int main() {
int a, b, p;
while (scanf("%d%d%d", &a, &p, &b) != EOF) {
if (!a && !b && !p) return 0;
int ans = exBSGS(a, b, p);
if (ans == -1) puts("No Solution");
else printf("%d\n", ans);
}
return 0;
}

exLucas

二次剩余(Cipolla)

xgzc— math 专题训练(二)的更多相关文章

  1. xgzc— math 专题训练(一)

    Lucas定理 当\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\) 狄利克雷卷积 定义:\((f*g)(n)= ...

  2. dp专题训练

    ****************************************************************************************** 动态规划 专题训练 ...

  3. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  4. Microsoft .Net Remoting系列专题之二

    Microsoft .Net Remoting系列专题之二 一.远程对象的激活 在Remoting中有三种激活方式,一般的实现是通过RemotingServices类的静态方法来完成.工作过程事实上是 ...

  5. 「kuangbin带你飞」专题十二 基础DP

    layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...

  6. 转:【专题十二】实现一个简单的FTP服务器

    引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...

  7. kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7949   Accepted: 42 ...

  8. kuangbin专题十二 POJ1661 Help Jimmy (dp)

    Help Jimmy Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14214   Accepted: 4729 Descr ...

  9. kuangbin专题十二 HDU1176 免费馅饼 (dp)

    免费馅饼 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. S03_CH12_基于UDP的QSPI Flash bin文件网络烧写

    S03_CH12_基于UDP的QSPI Flash bin文件网络烧写 12.1概述 为了满足不同的需求,本例程在"基于TCP的QSPI Flash bin文件网络烧写"上进行修改 ...

  2. JFinal(1)JFinal helloworld

    ** java的极速开放框架:Final 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful MVC架构,设 ...

  3. JDBC 学习复习6 学习与编写数据库连接池

    之前的工具类DBUtil暴露的问题 用户每次请求都需要向数据库获得链接,而数据库创建连接通常需要消耗相对较大的资源,创建时间也较长.假设网站一天10万访问量,数据库服务器就需要创建10万次连接,极大的 ...

  4. Joy OI【走廊泼水节】题解--最小生成树推论变式

    题目链接: http://joyoi.org/problem/tyvj-1391 思路: 首先这需要一个推论: "给定一张无向图,若用\(k(k<n-1)\)条边构成一个生成森林(可以 ...

  5. c#模拟鼠标左键单击

    [System.Runtime.InteropServices.DllImport("user32.dll")] private static extern int mouse_e ...

  6. js form表单提交后如何可以不刷新页面 的解决办法

    表单可实现无刷新页面提交,无需页面跳转,如下: 通过一个隐藏的iframe实现, form表单的target设置为iframe的name名称,form提交目标位当前页面iframe则不会刷新页面 &l ...

  7. Dell T30解决报Alert! Cover was previously removed.

    DELL T30自检中卡在F1/F2/F5选项,需要F1手动启动时报:Alert! Cover was previously removed是指向机器盖问题 [解决方法]: 1.检查机箱盖是否有盖紧 ...

  8. C和指针--预处理器

    编译一个C程序的第1个步骤是预处理(preprocessing)阶段.C预处理器在源代码编译之前对其进行一些文本性质的操作.它的主要任务包括删除注释.插入被#include指令包含的文件的内容.定义和 ...

  9. linux 欢迎界面

    开博第一篇文章,简单地写一篇linux欢迎界面吧 可以通过修改/etc/motd 或/etc/issue两个文件实现修改登录显示 区别:/etc/motd:( 登录成功才会显示 ) /etc/issu ...

  10. Error creating bean with name 'objectMapperConfigurer' defined in class path resource