FFTl裸题,小于的部分直接做,大于的部分倒序后再做就行了。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1 << 18;
const double Pi = acos(-1.0);
struct cp {
double x, y;
cp() { x = y = 0; }
cp(double x, double y) : x(x), y(y) {}
inline cp operator+(const cp &o) const { return cp(x + o.x, y + o.y); }
inline cp operator-(const cp &o) const { return cp(x - o.x, y - o.y); }
inline cp operator*(const cp &o) const { return cp(x * o.x - y * o.y, x * o.y + o.x * y); }
} f[MAXN], g[MAXN], b[MAXN];
int rev[MAXN];
inline void DFT(cp *arr, int len, int flg) {
for (int i = 0; i < len; ++i)
if (i < rev[i])
swap(arr[i], arr[rev[i]]);
for (int i = 2; i <= len; i <<= 1) {
cp wn = cp(cos(2 * Pi / i), flg * sin(2 * Pi / i));
for (int j = 0; j < len; j += i) {
cp w = cp(1, 0);
for (int k = j; k < j + i / 2; ++k, w = w * wn) {
cp x = arr[k], y = arr[k + i / 2] * w;
arr[k] = x + y;
arr[k + i / 2] = x - y;
}
}
}
if (flg == -1)
for (int i = 0; i < len; ++i) arr[i].x /= len;
}
int n;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%lf", &f[i].x), g[n - i + 1].x = f[i].x, b[i].x = 1.0 / i / i;
int len = 1;
while (len <= (n << 1)) len <<= 1;
for (int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) * (len >> 1));
DFT(f, len, 1), DFT(g, len, 1), DFT(b, len, 1);
for (int i = 0; i < len; ++i) f[i] = f[i] * b[i], g[i] = g[i] * b[i];
DFT(f, len, -1), DFT(g, len, -1);
for (int i = 1; i <= n; ++i) printf("%.3f\n", f[i].x - g[n - i + 1].x);
}

「ZJOI2014」力 FFT的更多相关文章

  1. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  2. 「ZJOI2014」星系调查

    「ZJOI2014」星系调查 本题核心在于快速求XPs 的线性假设相斥度. 点\((x1,y1)\)到直线\(y=kx+b\)的距离的平方为\(\displaystyle {(kx1+b-y1)^2} ...

  3. 「ZJOI2014」璀灿光华

    「ZJOI2014」璀灿光华 实际上,可以不用建水晶立方体... 因为,发光水晶的方向都要枚举一遍. 只需知道发光水晶每个方向有哪些水晶就可以了. 对于一个发光水晶,将它连接的水晶标号. 从该水晶bf ...

  4. [ZJOI2014][bzoj3527]力 [FFT]

    题面 传送门 思路 把要求的公式列出来: $E_i=\frac{F_i}{q_i}=\sum_{j=1}^i\frac{q_j}{\left(i-j\right)^2}-\sum_{j=i+1}^n\ ...

  5. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  6. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  7. Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门

      进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

随机推荐

  1. 龙芯PG10 安装uuid-ossp 的方法 复用瀚高数据库的 so文件

    接着上一篇blog  当时在中标麒麟 龙芯上面安装了postgresql10.10 的版本 但是没搞定 uuid 当时遇到的问题: 0. 只安装postgresql数据库会报错如图示: 我验证了下 安 ...

  2. Sql server 中count() 与 sum() 的区别

    一句话概括就是Sum(列) 是求和,把所有列的值进行汇总求和:COUNT(列) 是行数汇总,只要列的值不为Null,就会增加1: 举个例子说明下: --创建临时表结构 CREATE TABLE Tem ...

  3. BZOJ3879 SvT(后缀树+虚树)

    对反串建SAM得到后缀树,两后缀的lcp就是其在后缀树上lca的len值,于是每次询问对后缀树建出虚树并统计答案即可. #include<iostream> #include<cst ...

  4. poj 2915

    #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> ...

  5. 在CentOS部署AspNetCore网站

    前段时间某云服务器大促,就买了一台打算折腾一下,买了几个月,却啥也没做,就改了个初始密码.最近快到双十一了,另一家厂商相同配置的服务器价格又便宜了一大截,看来又得剁手了.从今年开始,搜索一下云服务器, ...

  6. .netcore 输出 json 的变量命名格式

    从mvc  迁移到的 .netcore mvc 的时候 ,发现很多js 报错,查了一下  居然是变量的大小改变了,这个需要到 starup.cs 设置 //设置返回 json 格式 首字母问题 按原格 ...

  7. Struts标签<s:if>判断字符串是否包含一个固定的值

    Struts标签<s:if>判断字符串是否包含一个固定的值:1.如果比较对象是字符串: <s:if test="str.contains('判断是否包含的字符串')&quo ...

  8. 【转载】salesforce 零基础开发入门学习(一)Salesforce功能介绍,IDE配置以及资源下载

    salesforce 零基础开发入门学习(一)Salesforce功能介绍,IDE配置以及资源下载   目前国内已经有很多公司做salesforce,但是国内相关的资料确是少之又少.上个月末跳槽去了新 ...

  9. openssh升级

    转载:(感谢作者) centos7 升级openssh到openssh-8.0p1版本 https://www.cnblogs.com/nmap/p/10779658.html centos 7 op ...

  10. 为什么Java大数据能带你走上人生巅峰

    国内大多数大型互联网公司的程序员被称作研发工程师,但实际上国内几乎没有研发项目,只能叫做开发. 开发程序员的工作大多是重复性劳动,容易产生疲惫感,薪资在工作2-5年内就达到了一个峰值,再要提升就比较困 ...