P5358 [SDOI2019]快速查询
思路:。。。乱搞数据结构??
提交:1次
题解:
观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum。
单点修改时,比如我们要把 \(pos\) 位置改成 \(y\) ,实际上我们应该储存 \(x\) , 且 \(y=mul*x+add\) ,即我们储存的是逆标记操作后的值。
同时要注意全体赋值后标记和 unordered_map 的清空。
代码:自带大常数
#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*f;
} const int N=100010,M=1e7+19;
int A,B,n,q,t,add,mul,sum,Inv[M],cvl,ans;
unordered_map<int,int> d;
struct node {int op,p,vl;}a[N];
inline void calc(int x) {
if(a[x].op==1) {
R tmp=a[x].vl,dec; tmp=1ll*((tmp-add)%M+M)%M*Inv[mul]%M;
if(d.count(a[x].p)) dec=(1ll*d[a[x].p]*mul+add)%M;
else dec=(1ll*mul*cvl+add)%M;
d[a[x].p]=tmp; sum=(1ll*sum+a[x].vl-dec+M)%M;
} if(a[x].op==2) add=(add+a[x].vl)%M,sum=(sum+1ll*n*a[x].vl)%M;
if(a[x].op==3) add=1ll*add*a[x].vl%M,mul=1ll*mul*a[x].vl%M,sum=1ll*sum*a[x].vl%M;
if(a[x].op==4) d.clear(),cvl=a[x].vl,add=0,mul=1,sum=1ll*n*a[x].vl%M;
if(a[x].op==5) {
if(!d.count(a[x].vl)) ans=(ans+1ll*mul*cvl+add)%M;
else ans=(ans+1ll*mul*d[a[x].vl]+add)%M;
} if(a[x].op==6) ans=(ans+sum)%M;
}
inline void main() {
Inv[1]=1; for(R i=2;i<M;++i) Inv[i]=M-1ll*M/i*Inv[M%i]%M;
n=g(),q=g(); for(R i=1;i<=q;++i) {
a[i].op=g(); if(a[i].op==1) a[i].p=g();
else if(a[i].op==6) continue; a[i].vl=(g()%M+M)%M;
} t=g(); for(R i=1;i<=t;++i) {
A=g(),B=g();
for(R j=1,c;j<=q;++j)
c=(A+1ll*j*B)%q+1,calc(c);
} printf("%d\n",(ans%M+M)%M);
}
} signed main() {Luitaryi::main(); return 0;}
2019.09.15
61
P5358 [SDOI2019]快速查询的更多相关文章
- luogu P5358 [SDOI2019]快速查询【模拟(?)】
把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...
- 【题解】Luogu P5358 [SDOI2019]快速查询
原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...
- [SDOI2019]快速查询——模拟
题目链接: [SDOI2019]快速查询 对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和. 对于单点修改,将$a_ ...
- [SDOI2019]快速查询
[SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...
- vijos2051 SDOI2019 快速查询
题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...
- 【洛谷5358】[SDOI2019] 快速查询(模拟)
点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...
- SDOI2019快速查询
链接 vijos 思路 虽然询问1e7,但他询问很有意思,所以最多修改1e5个. 先把他们修改的点缩小到1e5之内并没有什么影响. 然后维护mul和add.不修改很好弄,修改的点可以弄点式子加加减减弄 ...
- 快速查询Python脚本语法
/********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...
- 一种快速查询多点DS18B20温度的方法(转)
源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言 为了满足实时性要 ...
随机推荐
- win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总
win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总 2019-09-20 15:06:03 wyx100 阅读数 38更多 分类专栏: M ...
- 区间第k大问题 权值线段树 hdu 5249
先说下权值线段树的概念吧 权值平均树 就是指区间维护值为这个区间内点出现次数和的线段树 用这个加权线段树 解决第k大问题就很方便了 int query(int l,int r,int rt,int k ...
- Window环境下使用多个Git账号(github,gitee,gitlab,gogs等)
个人电脑之前已经设置好github账号了,公司用的是gitlab私服,一直互不干扰,因为用的是不同的电脑,也就懒得配置git多账户环境.最近看了一下多年空空如也的码云,想着怎么的也会用到gitee来托 ...
- Java 面向对象_继承
继承 在继承的关系中,子类就是一个父类,也就是说,子类可以被当做父类看待,例如:父类是员工,子类是程序员,那么程序员就是一个员工,代码示例: // 员工类 public class Employee{ ...
- sqlyog 如何导出建表语句
真傻了,这个问题弄了半天. 解决 点击表名后,在右侧的信息栏里面有啊: PS - 个人博客链接:sqlyog 如何导出建表语句
- VBA决策(十)
决策允许程序员控制脚本或其中一个部分的执行流程.执行由一个或多个条件语句控制.以下是在大多数编程语言中找到的典型决策结构的一般形式. VBA提供了以下类型的决策声明. 点击以下链接来查看它们的详细信息 ...
- js入门之数组
数组是一种数据类型,数组可以存储很多项, 有序,集合 Array 定义: var names = ['zs','ls','ww','zl'] 访问: 用索引或/下标 数组可以存储多种类型的数据 但是一 ...
- 【小知识点】如何通过jq获取textarea的值
textarea和input本质差不多,只不过input是一行文本,textarea是多行文本. 所以获取textarea的值的方法和获取input的值的方法是一致的, $('textarea').v ...
- stm32 printf重定向
printf函数调用fputc int fputc(int ch, FILE *p) { USART_SendData(USART1, ch); //重定向到串口 while(USART_GetFla ...
- MyBatis-Spring 之SqlSessionFactoryBean
要创建工厂 bean,放置下面的代码在 Spring 的 XML 配置文件中: <bean id="sqlSessionFactory" class="org.my ...