P5358 [SDOI2019]快速查询
思路:。。。乱搞数据结构??
提交:1次
题解:
观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum。
单点修改时,比如我们要把 \(pos\) 位置改成 \(y\) ,实际上我们应该储存 \(x\) , 且 \(y=mul*x+add\) ,即我们储存的是逆标记操作后的值。
同时要注意全体赋值后标记和 unordered_map 的清空。
代码:自带大常数
#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*f;
} const int N=100010,M=1e7+19;
int A,B,n,q,t,add,mul,sum,Inv[M],cvl,ans;
unordered_map<int,int> d;
struct node {int op,p,vl;}a[N];
inline void calc(int x) {
if(a[x].op==1) {
R tmp=a[x].vl,dec; tmp=1ll*((tmp-add)%M+M)%M*Inv[mul]%M;
if(d.count(a[x].p)) dec=(1ll*d[a[x].p]*mul+add)%M;
else dec=(1ll*mul*cvl+add)%M;
d[a[x].p]=tmp; sum=(1ll*sum+a[x].vl-dec+M)%M;
} if(a[x].op==2) add=(add+a[x].vl)%M,sum=(sum+1ll*n*a[x].vl)%M;
if(a[x].op==3) add=1ll*add*a[x].vl%M,mul=1ll*mul*a[x].vl%M,sum=1ll*sum*a[x].vl%M;
if(a[x].op==4) d.clear(),cvl=a[x].vl,add=0,mul=1,sum=1ll*n*a[x].vl%M;
if(a[x].op==5) {
if(!d.count(a[x].vl)) ans=(ans+1ll*mul*cvl+add)%M;
else ans=(ans+1ll*mul*d[a[x].vl]+add)%M;
} if(a[x].op==6) ans=(ans+sum)%M;
}
inline void main() {
Inv[1]=1; for(R i=2;i<M;++i) Inv[i]=M-1ll*M/i*Inv[M%i]%M;
n=g(),q=g(); for(R i=1;i<=q;++i) {
a[i].op=g(); if(a[i].op==1) a[i].p=g();
else if(a[i].op==6) continue; a[i].vl=(g()%M+M)%M;
} t=g(); for(R i=1;i<=t;++i) {
A=g(),B=g();
for(R j=1,c;j<=q;++j)
c=(A+1ll*j*B)%q+1,calc(c);
} printf("%d\n",(ans%M+M)%M);
}
} signed main() {Luitaryi::main(); return 0;}
2019.09.15
61
P5358 [SDOI2019]快速查询的更多相关文章
- luogu P5358 [SDOI2019]快速查询【模拟(?)】
把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...
- 【题解】Luogu P5358 [SDOI2019]快速查询
原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...
- [SDOI2019]快速查询——模拟
题目链接: [SDOI2019]快速查询 对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和. 对于单点修改,将$a_ ...
- [SDOI2019]快速查询
[SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...
- vijos2051 SDOI2019 快速查询
题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...
- 【洛谷5358】[SDOI2019] 快速查询(模拟)
点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...
- SDOI2019快速查询
链接 vijos 思路 虽然询问1e7,但他询问很有意思,所以最多修改1e5个. 先把他们修改的点缩小到1e5之内并没有什么影响. 然后维护mul和add.不修改很好弄,修改的点可以弄点式子加加减减弄 ...
- 快速查询Python脚本语法
/********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...
- 一种快速查询多点DS18B20温度的方法(转)
源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言 为了满足实时性要 ...
随机推荐
- Go学习路径--相关基础
现在开始接触Go一段时间了,基本路径就是看基础学习材料,开始写项目,有问题找解决问题的方法.这里记录一下学习过程. go相关文章 Golang适合高并发场景的原因分析 go build 不同系统下的可 ...
- solr-jd
springMVC.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...
- python处理RSTP视频流
python链接海康摄像头,并以弹出框的方式播放实时视频流, 这种方式是以弹出框的形式播放.本地测试可以,实际业务场景不建议使用.可以采用rtsp转rtmp的方式 @shared_task def p ...
- JS中this和call
首先来了解一下JS中this的原理: 要访问自己的属性就必须使用 this.属性名 1.this总是指向它的直接调用者: var a={ user:'Artimis', fn:function(){ ...
- 将两个数组相同index的value合并成一个新的value组成一个新的数组
将两个数组相同index的value合并成一个新的value组成一个新的数组 前提: 这两个数组的长度相同 生成后的新数组长度也相同 返回值都是对象 把rows对象的key和value弄成两个数组, ...
- Vivado问题集锦
1.添加包含子IP的模块到block design,报错如下所示: 错误的后面提供了解决方法:在tcl命令行中输入如下指令,添加子IP的xci文件即可. set_property generate_s ...
- stm32 i2c eeprom 24C02
电路图 相关文章:http://blog.csdn.net/zhangxuechao_/article/details/74936798 举例 #define i2c_scl PBout(10) #d ...
- Java基础加强-读取配置文件和内省
Java读取配置文件 1.采用ServletContext读取,读取配置文件的realpath,然后通过文件流读取出来. String path = "/WEB-INF/jdbc_conne ...
- Axure流程图
什么是流程图 一个流程图可用于展示各种各样的处理流程,包括用例流程.商业流程.页面流程等.在Axure中,流程图常用于提供一个高保真的.能通过所设计的页面来完成的任务视图.一张简明的流程图,能促进和其 ...
- nginx__的简单搭建和 wsgi
4 部署 1 配置 uwsig(配置文件) pip3 install uwsgi 1 mkdir uwsgi 2 cd uwsgi 3 touch test_uwsig.ini [uwsgi] # 指 ...