【LOJ】#3094. 「BJOI2019」删数
LOJ#3094. 「BJOI2019」删数
之前做atcoder做到过这个结论结果我忘了。。。
em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以放一条线段,没被线段放的地方就是需要改的数的总和
之后我们线段树维护区间最小值以及个数
我们要注意如果+1后使得一个本来在\([1,N]\)的点越出了范围,那么就要把这个区间给删掉,-1同理,要加进来
值域开成\(N + 2M\)也就是\(4.5*10^{5}\)即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 500005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MAXV = 150000,LEN = 450000;
int N,M;
int a[MAXN],d;
int cnt[LEN + 5];
int getpos(int x) {
return x - d + MAXV;
}
struct node {
int l,r,val,cnt,lz;
}tr[LEN * 4 + 5];
void update(int u) {
tr[u].val = min(tr[u << 1].val,tr[u << 1 | 1].val);
tr[u].cnt = 0;
if(tr[u].val == tr[u << 1].val) tr[u].cnt += tr[u << 1].cnt;
if(tr[u].val == tr[u << 1 | 1].val) tr[u].cnt += tr[u << 1 | 1].cnt;
}
void build(int u,int l,int r) {
tr[u].l = l;tr[u].r = r;
if(l == r) {tr[u].cnt = 1;return;}
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
update(u);
}
void addlz(int u,int v) {
tr[u].val += v;tr[u].lz += v;
}
void pushdown(int u) {
if(tr[u].lz) {
addlz(u << 1,tr[u].lz);
addlz(u << 1 | 1,tr[u].lz);
tr[u].lz = 0;
}
}
void add(int u,int l,int r,int v) {
if(tr[u].l == l && tr[u].r == r) {
addlz(u,v);
return;
}
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) add(u << 1,l,r,v);
else if(l > mid) add(u << 1 | 1,l,r,v);
else {add(u << 1,l,mid,v);add(u << 1 | 1,mid + 1,r,v);}
update(u);
}
pii Query(int u,int l,int r) {
if(tr[u].l == l && tr[u].r == r) return mp(tr[u].val,tr[u].cnt);
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) return Query(u << 1,l,r);
else if(l > mid) return Query(u << 1 | 1,l,r);
else {
pii a = Query(u << 1,l,mid),b = Query(u << 1 | 1,mid + 1,r);
if(a.fi > b.fi) swap(a,b);
if(a.fi == b.fi) a.se += b.se;
return a;
}
}
void Solve() {
read(N);read(M);
build(1,1,LEN);
for(int i = 1 ; i <= N ; ++i) {
read(a[i]);
a[i] += MAXV;
add(1,a[i] - cnt[a[i]],a[i] - cnt[a[i]],1);
cnt[a[i]]++;
}
int p,x;
for(int i = 1 ; i <= M ; ++i) {
read(p);read(x);
if(p == 0) {
if(x == 1) {
if(cnt[getpos(N)]) {add(1,getpos(N) - cnt[getpos(N)] + 1,getpos(N),-1);}
}
else {
if(cnt[getpos(N + 1)]) {add(1,getpos(N + 1) - cnt[getpos(N + 1)] + 1,getpos(N + 1),1);}
}
d += x;
}
else {
if(a[p] <= getpos(N)) {
add(1,a[p] - cnt[a[p]] + 1,a[p] - cnt[a[p]] + 1,-1);
}
cnt[a[p]]--;
a[p] = x - d + MAXV;
if(a[p] <= getpos(N)) {
add(1,a[p] - cnt[a[p]],a[p] - cnt[a[p]],1);
}
cnt[a[p]]++;
}
pii res = Query(1,getpos(1),getpos(N));
int ans = 0;
if(res.fi == 0) ans = res.se;
out(ans);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#3094. 「BJOI2019」删数的更多相关文章
- LOJ 3094 「BJOI2019」删数——角标偏移的线段树
题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...
- loj 3090 「BJOI2019」勘破神机 - 数学
题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- LOJ 3093 「BJOI2019」光线——数学+思路
题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...
- LOJ 3092 「BJOI2019」排兵布阵 ——DP
题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...
- @loj - 2174@ 「FJOI2016」神秘数
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个可重复数字集合 S 的神秘数定义为最小的不能被 S 的子集的 ...
随机推荐
- java中Switch的实现原理浅谈
switch的转换和具体系统实现有关,如果分支比较少,可能会转换为跳转指令(条件跳转指令和无条件跳转指令).但如果分支比较多,使用条件跳转会进行很多次的比较运算,效率比较低,可能会使用一种更为高效的方 ...
- kubernetes 之部署metrics-server v0.3.1
Metrics-server简介 Metrics-server是用来替换heapster获取集群上资源指标数据的,heapster从1.11开始逐渐被废弃了. 在使用heapster时,获取资源指标是 ...
- vmware中桥接模式和NAT的区别
桥接模式 在桥接模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机(主机和虚拟机处于对等地 位),它可以访问网内任何一台机器.在桥接模式下,我们往往需要为虚拟主机配置IP地址.子网掩 ...
- codeforces#1157D. Ehab and the Expected XOR Problem(构造)
题目链接: http://codeforces.com/contest/1174/problem/D 题意: 构造一个序列,满足以下条件 他的所有子段的异或值不等于$x$ $1 \le a_i< ...
- Linux版本内核及安装后的简单操作命令介绍
一.Linux的版本与内核 1.Linux发行版 Linux发行版= Linux内核+应用程序 Redhat,CentOS,Ubuntu,Suse,红旗,Mint,Fedora CentOS:社区版操 ...
- oracle函数mysql替代方案
=====1.日期相关===//获取当前日期在本周的周一select subdate(now(),date_format(now(),'%w')-1);//获取当前日期在本周的周日 select su ...
- DS博客作业04--树大作业
1.树的存储结构 本组采用的树的存储结构为链式结构,选择如图所示的结构体 Name为结点的名称 LevelNum为孩子节点的个数 *Children[20]用来指向不同的孩子结点(类似于二叉树的结构体 ...
- 黑马vue---18、v-for指令的四种使用方式
黑马vue---18.v-for指令的四种使用方式 一.总结 一句话总结: (item, i) in list:什么in什么的形式,前面是各种参数 1.v-for循环普通数组? <p v-for ...
- Qt子窗口QMidSubwindow全屏出现的问题总结
我的需求:想全屏一个子窗口QMidSubwindow,禁止显示最大化最小化和关闭按钮. 我开始尝试的是网上介绍的方法,把结果展现给大家一下,最后再总结: 方法1:QMidSubwindow直接调用sh ...
- php中的<?= ?>和<?php ?>有什么区别么?
<? ?>是短标签<?php ?>是长标签在php的配置文件(php.ini)中有一个short_open_tag的值,开启以后可以使用PHP的短标签:<? ?>同 ...