【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy
题目连接:
http://codeforces.com/contest/786/problem/B
Description
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.
There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.
By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.
Plans on the website have three types:
With a plan of this type you can open a portal from planet v to planet u.
With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.
Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.
Input
The first line of input contains three integers n, q and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.
The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers v, u and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers v, l, r and w where w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).
Output
In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or - 1 if it's impossible to get to that planet.
Sample Input
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
Sample Output
0 28 12
Hint
题意
三种操作:
1 a b c,在建立权值为c的a->b的单向边
2 a b c d,建立a->[b,c]权值为d的单向边
3 a b c d,建立[b,c]->a权值为d的单向边。
给你一个起点,问你起点到其他点的最短路长度。
题解:
如果暴力建边的话,显然会有n^2个边。
但是我们用线段树去建边就好了,我们依次让所有节点都指向自己区间的l端点和r端点就行了。
我相当于预先又建了nlogn个节点,这些虚拟节点代替区间。
然后跑dij就好了
以下解释来自:http://www.cnblogs.com/GXZlegend/p/7016722.html
一个朴素(已经不是最朴素的了)的加边方法:a~b的所有点->p1,长度为0;p1->p2,长度为1;p2->c~d的所有点,长度为0,其中加的都是有向边,p1和p2是新建的两个辅助点,然后再反过来进行这个过程。
然而这样加边的话边数依旧巨大。
由于给出的加边都是区间形式,所以我们可以用维护区间的数据结构——线段树,去优化这个建图过程。
具体方法(这里只讲加有向边a~b->c~d的方法):
建立两颗线段树A、B,其中A线段树每个非叶子节点的儿子向该节点连边,长度为0,B线段树每个非叶子节点向该节点的儿子连边,长度为0;B线段树的叶子结点向A线段树对应的叶子结点连边,长度为0。
这里面A线段树的叶子结点代表原图中的节点,其余节点都是用来优化建图。
对于加边操作,找到A线段树上a~b对应的区间节点,这些节点向p1连边,长度为0;p1->p2,长度为1;找到B线段树上c~d对应的区间节点,p2向这些节点连边,长度为0.
最后跑堆优化Dijkstra出解。
应该不是很难理解,具体可以见代码。
图片来自:http://blog.csdn.net/weixin_37517391/article/details/77073700
代码:


1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn = 2e6+7;
4 vector<pair<int,int> >v[maxn];
5 long long dist[maxn],ver[2][maxn];//ver0表示左边的线段树,1表示右边的线段树
6 int n,q,ss,tme;
7 set<pair<long long,int> >s;
8 int build(int y,int l,int r,int x){
9 if(l==r) return ver[x][y]=l; //注意这个操作,有了这个操作,就将虚设的节点与原先的n个节点连接起来了
10 ver[x][y]=++tme;
11 int mid=(l+r)/2;
12 int cl=build(y*2,l,mid,x);
13 int cr=build(y*2+1,mid+1,r,x);
14 if(x==0){
15 v[ver[x][y]].push_back(make_pair(cl,0));
16 v[ver[x][y]].push_back(make_pair(cr,0));
17 }else{
18 v[cl].push_back(make_pair(ver[x][y],0));
19 v[cr].push_back(make_pair(ver[x][y],0));
20 }
21 return ver[x][y];
22 }
23 void update(int x,int l,int r,int ll,int rr,int xx,int w,int z){
24 if(l>rr||r<ll) return;
25 if(l>=ll&&r<=rr){
26 if(z==0) v[xx].push_back(make_pair(ver[z][x],w));
27 else v[ver[z][x]].push_back(make_pair(xx,w));
28 return;
29 }
30 int mid=(l+r)/2;
31 update(x*2,l,mid,ll,rr,xx,w,z);
32 update(x*2+1,mid+1,r,ll,rr,xx,w,z);
33 }
34 int main(){
35 cin>>n>>q>>ss;
36 memset(dist,-1,sizeof(dist));
37 tme=n;
38 build(1,1,n,0); //建立左边线段树的虚节点
39 build(1,1,n,1); //建立右边线段树的虚节点
40 for(int i=0;i<q;i++){
41 int t,a,b,c,d;
42 cin>>t>>a>>b>>c;
43 if(t==1){
44 v[a].push_back(make_pair(b,c)); //单点直接连边即可
45 }else{
46 cin>>d;
47 update(1,1,n,b,c,a,d,t-2); //update,最后一个参数为flag,只有0或1
48 }
49 }
50 dist[ss]=0;
51 priority_queue<pair<long long,int> >Q;
52 Q.push(make_pair(0,ss));
53 while(!Q.empty()){
54 int now = Q.top().second;
55 Q.pop();
56 for(int i=0;i<v[now].size();i++){
57 int ve=v[now][i].first;
58 int co=v[now][i].second;
59 if(dist[ve]==-1||dist[now]+co<dist[ve]){
60 dist[ve]=dist[now]+co;
61 Q.push(make_pair(-dist[ve],ve));
62 }
63 }
64 }
65 for(int i=1;i<=n;i++)
66 cout<<dist[i]<<" ";
67 cout<<endl;
68 }
【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路的更多相关文章
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #406 (Div. 2) 787-D. Legacy
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So ...
- Codeforces Round #603 (Div. 2) E. Editor 线段树
E. Editor The development of a text editor is a hard problem. You need to implement an extra module ...
- Codeforces Codeforces Round #316 (Div. 2) C. Replacement 线段树
C. ReplacementTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/570/problem ...
- Codeforces Round #765 Div.1 F. Souvenirs 线段树
题目链接:http://codeforces.com/contest/765/problem/F 题意概述: 给出一个序列,若干组询问,问给出下标区间中两数作差的最小绝对值. 分析: 这个题揭示着数据 ...
- Codeforces Round #271 (Div. 2) E. Pillars 线段树优化dp
E. Pillars time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #278 (Div. 2) D. Strip 线段树优化dp
D. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
随机推荐
- SimpleDateFormat线程安全问题
今天线上出现了问题,从第三方获取的日期为 2019-12-12 11:11:11,通过SimpleDateFormat转换格式后,竟然出现完全不正常的日期数据,经百度,得知SimpleDateForm ...
- 阿里云 负载均衡 HTTP转HTTPS
一.相关文档 1.证书服务 2.简单路由-HTTP 协议变为 HTTPS 协议 二.阿里云操作界面 1.云盾证书服务管理控制台(查询CA证书服务) 2.负载均衡管理控制台 三.相关文档 1.Syman ...
- OSG3.4内置Examples解析【目录】
opengl渲染管线 从整体上解读OpenGL的渲染流程 一 从整体上解读OpenGL的渲染流程 二 osg与animate相关示例解析 OSG3.4内置Examples(osganimate)解析 ...
- Java内存管理-探索Java中字符串String(十二)
做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 一.初识String类 首先JDK API的介绍: public final class String extends O ...
- H-ui前端框架,后端模板
http://www.h-ui.net/ H-ui前端框架系统是基于 HTML.CSS.JAVASCRIPT开发的轻量级web前端框架. H-ui是根据中国现阶段网站特性和程序员开发习惯,在boots ...
- Python的global指令的作用
Python的global指令的作用 学过其他常用编程语言的同学一定清楚,Python是一个语法非常宽容的语言.它是个变量的定义可以省略.直接赋值.根据赋值结果自动确定变量类型的弱类型语言. 但是这样 ...
- nhandled rejection Error: EPERM: operation not permitted, open 'C:\Program Files\nodejs\node_cache npm ERR! cb() never called!
安装全局包时报错,之前已经遇到过,结果第二次又忘记解决方法,果然还是要记下来,好记性不如烂笔头哇 $ npm i electron -gUnhandled rejection Error: EPERM ...
- 阿里P8架构师总结Java并发面试题(精选)
一.什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成一 ...
- 移动端rem移动适配
https://www.cnblogs.com/jingwhale/p/5741567.html
- ShedLock日常使用
首发于个人博客:ShedLock日常使用 场景模拟 定时器Scheduler在平时使用比较频繁,比如定时数据整理,定时向客户发送问候信息等...,定时任务的配置比较简单,比如在springboot中, ...