PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度。

它主要应用在以下三个方面:

1. 提升算法速度

2. 压缩数据,减小内存、硬盘空间的消耗

3. 图示化数据,将高纬数据映射到2维或3维

总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射。其中,k<n

它的核心算法如下:

1. 将数据均一化

x' = [x-mean(x)] / range(x)

2. 计算它的协方差矩阵

即:Sigma = 1/m * x' * x

3. 进行svd分解,计算特征向量

[U, S, V] = svd(Sigma)

选出U中的前k列,就可以得到映射公式啦

即:

Ureduce = U(:, 1:k);

z = Ureduce'*x;

其中,z便是降维后映射得到的特征矩阵。

至于如何选择k,那要看我们决定保留原始信息的多少变化范围(variance)。当我们想保留

原始信息99%的variance时:

即:将S中前k个对角线元素相加,最小的能使相加和大于整个S的对角线和的99%的k便是我们应选择的k。

有压缩,那自然就有相应的还原。不过PCA本身的压缩是有损压缩,无法还原为与原来完全一样的值。(当然k=n另当别论)

我们只能够得到原始特征向量(非矩阵)的近似还原值。公式为:

即:Xapprox = Ureduce * Z

在使用PCA时,有几个要注意的地方:

1. 构建机器学习算法时,不要一上来就想要用PCA,一般而言,直接使用原始特征效果会比较好。

PCA是在原始算法过于缓慢,或者内存、硬盘空间实在不够大无法支撑计算时才有必要加入的

2. 不要用PCA来减小过拟合的问题,用regularization才是解决过拟合更为合理的方法。因为

PCA只看特征矩阵来决定如何减小特征数,而regularization同时看特征矩阵和对应的label来减小过拟合。

非监督的降维算法--PCA的更多相关文章

  1. [机器学习理论] 降维算法PCA、SVD(部分内容,有待更新)

    几个概念 正交矩阵 在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵:  其中,为单位矩阵. ...

  2. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  3. 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述

    概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...

  4. ML: 降维算法-PCA

            PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...

  5. 降维算法-PCA主成分分析

    1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...

  6. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  7. 降维算法----PCA原理推导

    1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                             ...

  8. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

  9. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

随机推荐

  1. ubuntu安装软件apt-get

    一. apt-get用法 apt 0.8.16~exp12ubuntu10.26 for i386 compiled on Aug  5 2015 19:06:21Usage: apt-get [op ...

  2. C++面试高频题

    作者:守望者1028链接:https://www.nowcoder.com/discuss/55353来源:牛客网 面试高频题: 校招过程中参考过牛客诸位大佬的面经,但是具体哪一块是参考谁的我也忘记了 ...

  3. python 3.4.3 安装pygame

    之前一直都是用的python3.5,后来接触了pygame,又被python3.5的打包折磨的死去活来,后来干脆用python 3.4.3. 我之前安装轮子都是直接打开cmd,然后 pip3 inst ...

  4. ora-01847:月份中日的值必须介于 1 和当月最后一日之间

    今天解决了一个奇葩问题: ORA-01847: 月份中日的值必须介于 1 和当月最后一日之间 将数据从一个视图倒入到一个同结构的表中,但是老报错,也就那么几个字段,肉眼真看不出来什么问题,但是既然报这 ...

  5. ribbon负载均衡循环策略源码

    (原) 在用ribbon负载均衡取eureka注册中心中的地址时,默认采用循环策略,例如商品服务有3个,分别为URL1,URL2,URL3,那么在客户端第一次取时,会取到URL1,第二次取时取到URL ...

  6. 搭建单机版伪分布zookeeper集群

    一.下载zookeeper http://mirrors.shu.edu.cn/apache/zookeeper/stable/ 我下载的是3.4.13版本 上传到liunx虚拟机上,解压 再复制出2 ...

  7. vue.js 简介

    Vue.js是什么 Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的 渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层 ...

  8. linux 命令格式和帮助

    命令的格式: command [options] [arguments] command:命令 options:  --单词全称   或   -单字简称 如: ls --all 等于     ls - ...

  9. 【Python网络】子网划分

    ip地址的结构和分类 根据 TCP/IP 协议,连接在internet上的每个设备都必须有一个ip地址 他是一个32位二进制数,也可以用点分十进制表示,每八位一组,用一个十进制表示即0-255,每组用 ...

  10. BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho

    挺简单的,正好能再复习一遍 $exgcd$~ 按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节. #include <ctime> #include <cma ...