非监督的降维算法--PCA
PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度。
它主要应用在以下三个方面:
1. 提升算法速度
2. 压缩数据,减小内存、硬盘空间的消耗
3. 图示化数据,将高纬数据映射到2维或3维
总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射。其中,k<n
它的核心算法如下:
1. 将数据均一化
x' = [x-mean(x)] / range(x)
2. 计算它的协方差矩阵

即:Sigma = 1/m * x' * x
3. 进行svd分解,计算特征向量
[U, S, V] = svd(Sigma)
选出U中的前k列,就可以得到映射公式啦

即:
Ureduce = U(:, 1:k);
z = Ureduce'*x;
其中,z便是降维后映射得到的特征矩阵。
至于如何选择k,那要看我们决定保留原始信息的多少变化范围(variance)。当我们想保留
原始信息99%的variance时:

即:将S中前k个对角线元素相加,最小的能使相加和大于整个S的对角线和的99%的k便是我们应选择的k。
有压缩,那自然就有相应的还原。不过PCA本身的压缩是有损压缩,无法还原为与原来完全一样的值。(当然k=n另当别论)
我们只能够得到原始特征向量(非矩阵)的近似还原值。公式为:

即:Xapprox = Ureduce * Z
在使用PCA时,有几个要注意的地方:
1. 构建机器学习算法时,不要一上来就想要用PCA,一般而言,直接使用原始特征效果会比较好。
PCA是在原始算法过于缓慢,或者内存、硬盘空间实在不够大无法支撑计算时才有必要加入的
2. 不要用PCA来减小过拟合的问题,用regularization才是解决过拟合更为合理的方法。因为
PCA只看特征矩阵来决定如何减小特征数,而regularization同时看特征矩阵和对应的label来减小过拟合。
非监督的降维算法--PCA的更多相关文章
- [机器学习理论] 降维算法PCA、SVD(部分内容,有待更新)
几个概念 正交矩阵 在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵: 其中,为单位矩阵. ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...
- ML: 降维算法-PCA
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...
- 降维算法-PCA主成分分析
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 降维算法----PCA原理推导
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1 ...
- 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...
- 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform
重要接口inverse_transform 在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...
随机推荐
- Scala获取main函数参数,idea演示
1 代码示范 /** * @author zhangjin * @create 2019-06-09 11:15 */ object TestMarnArgs { def main(args: Arr ...
- Linux使用wget仿站
运行命令 $ wget -r -p -np -k www.avatrade.cn 参数说明 -r --recursive(递归) specify recursive download.(指定递归下载) ...
- Tomcat 启动卡在 Root WebApplicationContext: initialization completed in
tomcat 启动一直卡在 Root WebApplicationContext: initialization completed in 重启了很多次,更换jdk版本,tomcat版本都不行. to ...
- D - Nested Segments CodeForces - 652D (离散化+树桩数组)
D - Nested Segments CodeForces - 652D You are given n segments on a line. There are no ends of some ...
- zencart后台管理中选项名称和选项内容和属性控制页面出错解决办法 WARNING: An Error occurred, please refresh the page and try again
后台管理中选项名称和选项内容和属性控制出现以下错误的解决办法WARNING: An Error occurred, please refresh the page and try again zen ...
- D - A or...or B Problem
题意:给定A,B,问[A,B]里取任意个数按位或,结果有多少种. 思路:这题需要找出一个分界点,即找到最高位的B是1,A是0的位置x(最低位从0开始),那么对于所有OR的结果,x处要么是1要么是0,x ...
- CMD命令集锦
1. gpedit.msc-----组策略 2. sndrec32-------录音机 3. Nslookup-------IP地址侦测器 ,是一个 监测网络中 DNS 服务器是否能正确实 ...
- C# class 浅拷贝 与 深拷贝
MemberwiseClone 方法创建一个浅表副本,具体来说就是创建一个新对象,然后将当前对象的非静态字段复制到该新对象.如果字段是值类型的,则对该字段执行逐位复制.如果字段是引用类型,则复制引用但 ...
- github高速下载的方法
windows修改host文件: C:\Windows\System32\drivers\etc\hostslinux 修改host文件: /etc/hosts 在文件后面加上这两行 151.101. ...
- Oracle之:Function :func_float()
create or replace function func_float(i_value float) return number is v_index number := 0; v_str var ...