【学习笔记】RMQ-Range Minimum/Maximum Query (区间最小/最大值)
RMQ是一类询问区间最小/最大值的问题。
这类问题一般分成两类:静态区间(无修改),动态区间(带修改)。
对于动态区间查询最大/最小,我们显然可以用线段树来解决……
那么对于静态区间查询最大/最小的问题,我们一般用ST算法解决。(显然这个我们也可以用线段树)
这个算法相比于线段树来说有以下优点:
·程序实现比较简单。
·运行速度快,常数小。
接下来为了解释方便,我们假设我们要查询区间的最大值。
一.ST算法的实质
ST算法的实质是动态规划。
现在我们有一组数a[1…n];
我们定义f(i,j)表示从a[i]开始,向后长度为2j的区间中最大值。基于分治思想,我们可以把这段区间分为两部分,每一部分的长度恰好是2j-1。
那么显然有以下转移方程:
f(i,j)=max(f(i,j-1),f(i+2j-1,j-1);
这就是ST算法的实质,下面介绍ST算法的流程。
二.ST算法的流程
1.预处理
上面我们提到过,ST算法的实质就是动态规划。那么我们通过枚举i和j来预处理f数组,复杂度为O(nlogn)。
状态转移方程:f(i,j)=max(f(i,j-1),f(i+2j-1,j-1);
边界条件:f(i,0)=ai;为每个位置的元素值。
2.询问
如果我们要询问区间[l,r]的最大值,我们同样把这个区间分为两个部分,但这次我们将这个区间分为两个有交集区间。
根据f数组的第二维,我们找到一个数x满足2x≤r-l+1,然后把区间分为[l,l+2x-1]和[r-2x+1,r],显然这两个区间的并集就是我们要查找的区间[l,r]。
通过这样的处理,这两个区间的元素正好是2的正次幂,所以[l,r]区间的最大值为max(f(l,x),f(r-2x+1,x)),查询操作的复杂度是O(1)。
那么我们要求区间[l,r]的最大值,有以下表达式:
k=log2(r-l+1);
ans=max(f[l][k],f[r-2k+1][k]);
通过这些我们可以发现,ST算法适用于没有修改操作并且询问次数较多的RMQ问题。
三.一些技巧
我们可以用O(n)的额外时间预处理出log数组,这个过程是递推的,根据函数本身定义我们可以得到以下式子:
log(x)=log(x/2)+1;
四.代码
有N个数,M个询问,询问区间最大值:
#include<bits/stdc++.h>
using namespace std;
int n,m,l,r,ds[],R[][];//ds即为log预处理,R表示f数组
int main()
{
scanf("%d%d",&n,&m);
ds[]=-;//方便递推
for(int i=;i<=n;i++)
{
scanf("%d",&R[i][]);
ds[i]=ds[i>>]+;
}
for(int j=;j<=;j++)
{
for(int i=;i+(j<<)-<=n;i++)
{
R[i][j]=max(R[i][j-],R[i+(<<j-)][j-]);
}
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&l,&r);
int s=ds[r-l+];
printf("%d\n",max(R[l][s],R[r-(<<s)+][s]));
}
return ;
}
【学习笔记】RMQ-Range Minimum/Maximum Query (区间最小/最大值)的更多相关文章
- RMQ((Range Minimum/Maximum Query))ST算法
给定一个数组,求出给定区间[l,r]中元素的最大值或最小值或者最值的索引. 一看到这个题目,简单,看我暴力出奇迹.暴力当然是可行的.但是时间复杂度很高(O(n^2)).线段树,树状数组也可以解决这个问 ...
- 主席树初步学习笔记(可持久化数组?静态区间第k大?)
我接触 OI也快1年了,然而只写了3篇博客...(而且还是从DP跳到了主席树),不知道我这个机房吊车尾什么时候才能摸到大佬们的脚后跟orz... 前言:主席树这个东西,可以说是一种非常畸形的数据结构( ...
- Guava学习笔记:Range
在Guava中新增了一个新的类型Range,从名字就可以了解到,这个是和区间有关的数据结构.从Google官方文档可以得到定义:Range定义了连续跨度的范围边界,这个连续跨度是一个可以比较的类型(C ...
- [一本通学习笔记] RMQ专题
傻傻地敲了好多遍ST表. 10119. 「一本通 4.2 例 1」数列区间最大值 #include <bits/stdc++.h> using namespace std; const i ...
- html5学习笔记5--API Range对象(二)
Range对象之cloneRange和cloneContents 代码效果如下 首次点击“选择内容“按钮提示如下 接着会显示 最后显示 以下为整个代码 <!DOCTYPE html> &l ...
- html5学习笔记4--API Range对象(一)
Range对象基本用法 效果图如下(在谷歌浏览器下的展示)
- Android(java)学习笔记141:SQLiteDatabase的query方法参数分析
public Cursor query (boolean distinct, String table, String[] columns, String selection, String[] se ...
- ArcGIS API for JavaScript 4.2学习笔记[20] 使用缓冲区结合Query对象进行地震点查询【重温异步操作思想】
这个例子相当复杂.我先简单说说这个例子是干啥的. 在UI上,提供了一个下拉框.两个滑动杆,以确定三个参数,使用这三个参数进行空间查询.这个例子就颇带空间查询的意思了. 第一个参数是油井类型,第二个参数 ...
- python学习笔记之——range()函数
range函数的三种用法:>>> range(1,5) # 代表从1到5(不包含5) [1, 2, 3, 4] >>> range(1,5,2) # 代表从1到5, ...
随机推荐
- python3编程基础之一:标识符
每种编程语言都是需要处理数据的,需要变量.函数.类等,而这些都是通过名称访问的.因此,能够作为变量.函数.类等名称的字符串就是标识符.数据,是计算机进行运算的实体.标识符,用来标记的符号,它会指向一个 ...
- codeforces319C
C. Kalila and Dimna in the Logging Industry time limit per test 2 seconds memory limit per test 256 ...
- 学习OpenCV双目测距原理及常见问题解答
学习OpenCV双目测距原理及常见问题解答 转自博客:https://blog.csdn.net/angle_cal/article/details/50800775 一. 整体思路和问题转化. 图 ...
- 工具类_JavaPOI_Office文件内容读取
文件内容读取工具类,亲测可用 maven依赖: <dependency> <groupId>org.apache.poi</groupId> <artifac ...
- oracle数据库的存储原理
表空间,oracle逻缉存储结构,表空间下包含一个或者多个物理的文件存储.所有用户对象存放在表空间中.与系统有关的对象存放在系统表空间中. 数据库的作用就是实现对数据的管理和查询.任何一个数据库系统, ...
- error: cannot connect to daemon解决办法
本文链接:https://blog.csdn.net/ipinki1218/article/details/80704806运行adb shell时出现error: cannot connect to ...
- CAP C3-2分析
一致性 可用性 分区容错性 <Hadoop构建数据仓库实践> p84
- Linux shell脚本 (十二)case语句
case语句 case ... esac 与其他语言中的 switch ... case 语句类似,是一种多分枝选择结构. case 语句匹配一个值或一个模式,如果匹配成功,执行相匹配的命令.case ...
- Oracle 11g 监听很慢,由于监听日志文件太大引起的问题(Windows 下)
现象:Windows 操作系统的Oracle 数据库,使用sqlplus 连接(不指定实例名)连接很快,程序连接或使用连接工具或在Net Manager 中测试连接都需要花费约三四十秒的时间(程序连接 ...
- java的servlet执行过程是怎么样的?
java的servlet执行过程是怎么样 答: Servlet执行过程:程序第一次访问,会调用servlet的init()方法初始化(只执行一次),每次程序执行都会根据请求调用doGet()或者d ...