题目描述

TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x,y)

N,M<=10000000T<=10000N,M <= 10000000\newline
T&lt;= 10000N,M<=10000000T<=10000

题目分析

直接开始变换,假设N<M

Ans=∑x=1N∑y=1Mxy(x,y)=∑T=1N1T∑x=1N∑y=1Mxy[(x,y)==T]=∑T=1N1T∑x=1⌊NT⌋∑y=1⌊MT⌋xyT2[(x,y)==1]=∑T=1NT∑x=1⌊NT⌋∑y=1⌊MT⌋xy∑d∣x,d∣yμ(d)=∑d=1Nμ(d)∑T=1NT∑d∣x⌊NT⌋x∑d∣y⌊MT⌋y=∑d=1Nμ(d)∑T=1NTd2∑x=1⌊⌊NT⌋d⌋x∑y=1⌊⌊MT⌋d⌋y=∑d=1Nμ(d)∑T=1NTd2∑x=1⌊NTd⌋x∑y=1⌊MTd⌋y此时令k=TdAns=∑k=1N∑T∣kμ(⌊kT⌋)k⌊kT⌋∑x=1⌊Nk⌋x∑y=1⌊Mk⌋y=∑k=1Nk∑T∣kμ(T)T∑x=1⌊Nk⌋x∑y=1⌊Mk⌋y
Ans=\sum_{x=1}^N\sum_{y=1}^M \frac {xy}{(x,y)}\newline
=\sum_{T=1}^N\frac 1T\sum_{x=1}^N\sum_{y=1}^Mxy[(x,y)==T]\newline
=\sum_{T=1}^N\frac 1T\sum_{x=1}^{⌊\frac NT⌋}\sum_{y=1}^{⌊\frac MT⌋}xyT^2[(x,y)==1]\newline
=\sum_{T=1}^NT\sum_{x=1}^{⌊\frac NT⌋}\sum_{y=1}^{⌊\frac MT⌋}xy\sum_{d|x,d|y}\mu(d)\newline
=\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}T\sum_{d|x}^{⌊\frac NT⌋}x\sum_{d|y}^{⌊\frac MT⌋}y\newline
=\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}Td^2\sum_{x=1}^{⌊\frac{⌊\frac NT⌋}d⌋}x\sum_{y=1}^{⌊\frac{⌊\frac MT⌋}d⌋}y\newline
=\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}Td^2\sum_{x=1}^{⌊\frac N{Td}⌋}x\sum_{y=1}^{⌊\frac M{Td}⌋}y\newline
此时令k=Td\newline
Ans=\sum_{k=1}^N\sum_{T|k}\mu(⌊\frac kT⌋)k⌊\frac kT⌋\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y\newline
=\sum_{k=1}^Nk\sum_{T|k}\mu(T)T\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y\newline
Ans=x=1∑N​y=1∑M​(x,y)xy​=T=1∑N​T1​x=1∑N​y=1∑M​xy[(x,y)==T]=T=1∑N​T1​x=1∑⌊TN​⌋​y=1∑⌊TM​⌋​xyT2[(x,y)==1]=T=1∑N​Tx=1∑⌊TN​⌋​y=1∑⌊TM​⌋​xyd∣x,d∣y∑​μ(d)=d=1∑N​μ(d)T=1∑N​Td∣x∑⌊TN​⌋​xd∣y∑⌊TM​⌋​y=d=1∑N​μ(d)T=1∑N​Td2x=1∑⌊d⌊TN​⌋​⌋​xy=1∑⌊d⌊TM​⌋​⌋​y=d=1∑N​μ(d)T=1∑N​Td2x=1∑⌊TdN​⌋​xy=1∑⌊TdM​⌋​y此时令k=TdAns=k=1∑N​T∣k∑​μ(⌊Tk​⌋)k⌊Tk​⌋x=1∑⌊kN​⌋​xy=1∑⌊kM​⌋​y=k=1∑N​kT∣k∑​μ(T)Tx=1∑⌊kN​⌋​xy=1∑⌊kM​⌋​y

总算推完了…

此时只需要Θ(N)\Theta(N)Θ(N)线性筛出∑T∣kμ(T)T\sum_{T|k}\mu(T)T∑T∣k​μ(T)T,然后处理k∑T∣kμ(T)Tk\sum_{T|k}\mu(T)Tk∑T∣k​μ(T)T的前缀和

而∑x=1⌊Nk⌋x∑y=1⌊Mk⌋y\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y∑x=1⌊kN​⌋​x∑y=1⌊kM​⌋​y可以Θ(1)\Theta(1)Θ(1)出

利用整除分块优化,时间复杂度为Θ(N+TN)\Theta(N+T\sqrt N)Θ(N+TN​)

AC code([bzoj 2693] jzptab)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 1e8+9;
int N, M;
namespace Mobius
{
int mu[MAXN], Prime[MAXN], cnt;
bool IsnotPrime[MAXN];
int sum[MAXN];
void init()
{
sum[1] = 1;
for(int i = 2; i <= MAXN-5; i++)
{
if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
for(int j = 1; j <= cnt && i * Prime[j] <= MAXN-5; j++)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
}
}
for(int i = 1; i <= MAXN-5; i++)//前缀和
sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
}
int Sum(int N, int M)
{
return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
}
int calc(int N, int M)
{
int ret = 0;
for(int i = 1, j; i <= N; i=j+1)//整除分块
{
j = min(N/(N/i), M/(M/i));
ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
}
return ret;
}
}
using namespace Mobius;
int main ()
{
int T; init();
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &N, &M); if(N > M) swap(N, M);
printf("%d\n", (calc(N, M) + mod) % mod);
}
}
AC code([bzoj 2154] Crash的数字表格)

这道题有个恶心的地方,不能用MaxnMaxnMaxn来预处理,否则会TLETLETLE,要读入NNN,MMM后再O(N)O(N)O(N)处理

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 20101009;
int N, M;
namespace Mobius
{
int mu[MAXN], Prime[MAXN], cnt;
bool IsnotPrime[MAXN];
int sum[MAXN];
void init()
{
sum[1] = 1;
for(int i = 2; i <= N; i++)
{
if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
for(int j = 1; j <= cnt && i * Prime[j] <= N; j++)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
}
}
for(int i = 1; i <= N; i++)
sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
}
int Sum(int N, int M)
{
return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
}
int calc(int N, int M)
{
int ret = 0;
for(int i = 1, j; i <= N; i=j+1)
{
j = min(N/(N/i), M/(M/i));
ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
}
return ret;
}
}
using namespace Mobius;
int main ()
{
scanf("%d%d", &N, &M); if(N > M) swap(N, M); init();
printf("%d\n", (calc(N, M) + mod) % mod);
}

[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  4. BZOJ 2154 Crash的数字表格 ——莫比乌斯反演

    求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...

  5. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  6. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  7. 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演

    求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...

  8. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  9. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

随机推荐

  1. redis的key设置每天凌晨过期的思路

    设置key凌晨过期的思路 设置key的值的时候,计算下当前时间到第二天凌晨的时间差,设置key的过期时间. 利用定时任务,每天凌晨将需要过期的key删除. 应用场景 按天为维度,限制用户对资源的访问次 ...

  2. CentOS7服务器查看相关配置命令

    CPU个数:(base) [jiangshan@localhost ~]$ grep 'physical id' /proc/cpuinfo | sort -u | wc -l2CPU核数:(base ...

  3. Spring 中的统一异常处理

    在具体的SSM项目开发中,由于Controller层为处于请求处理的最顶层,再往上就是框架代码的.因此,肯定需要在Controller捕获所有异常,并且做适当处理,返回给前端一个友好的错误码. 不过, ...

  4. 在CentOS7 安装 Redis数据库

    环境说明: 名称 版本 CentOS CentOS Linux release 7.4.1708 (Core) VMware Fusion 专业版 10.1.1 (7520154) SSH Shell ...

  5. 剑指offer65:矩阵中的路径(二维数组,二分查找)

    1 题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩 ...

  6. Ubuntu的apt命令详解()deepin linux是在Ubuntu基础上开发的

    apt-cache和apt-get是apt包的管理工具,他们根据/etc/apt/sources.list里的软件源地址列表搜索目标软件.并通过维护本地软件包列表来安装和卸载软件. 查看本机是否安装软 ...

  7. SQL SERVER 中如何获取日期(一个月的最后一日、一年的第一日等等)

    https://blog.csdn.net/deepwishly/article/details/9101307 这是计算一个月第一天的SQL 脚本:   SELECT DATEADD(mm, DAT ...

  8. C#插入时间

    //获取日期+时间 DateTime.Now.ToString(); // 2008-9-4 20:02:10 DateTime.Now.ToLocalTime().ToString(); // 20 ...

  9. Go 互斥锁(sync.Mutex)和 读写锁(sync.RWMutex)

    什么时候需要用到锁? 当程序中就一个线程的时候,是不需要加锁的,但是通常实际的代码不会只是单线程,所以这个时候就需要用到锁了,那么关于锁的使用场景主要涉及到哪些呢? 多个线程在读相同的数据时 多个线程 ...

  10. 【转载】IIS网站如何同时解析带www和不带www的域名

    针对公网上线的网站系统,很多网站的域名会同时含有带www和不带www的域名解析记录,如果需要同时解析带www和不带www的域名信息,则需要在相应的域名解析平台(如阿里云域名解析平台.腾讯云域名解析平台 ...