[TJOI2015]弦论(第k小子串)
题意:
对于一个给定的长度为n的字符串,求出它的第k小子串。
有参数t,t为0则表示不同位置的相同子串算作一个,t为1则表示不同位置的相同子串算作多个。
题解:
首先,因为t的原因,后缀数组较难实现,这里不讨论。
使用后缀自动机:
因为,这里需要按字典序考虑子串,所以要使用trs指针。
首先,计算出每个子串的贡献:t=0则为1,t=1则为出现次数。
然后,通过记搜算出匹配到每个点之后可以形成多少贡献。因为使用trs,无需考虑压缩。
最后,在每个节点处找到唯一一个应当向下计算的点,循环直到找到解。
代码:
#include <stdio.h>
#define ll long long
int trs[1000010][26],fa[1000010],len[1000010],sl=1,la=1;
int su[1000010];ll dp[1000010];
void insert(int c)
{
int np=++sl,p=la;
len[np]=len[la]+1;la=np;
while(p!=0&&trs[p][c]==0)
{
trs[p][c]=np;
p=fa[p];
}
if(p==0)
fa[np]=1;
else
{
int q=trs[p][c];
if(len[q]==len[p]+1)
fa[np]=q;
else
{
int nq=++sl;
len[nq]=len[p]+1;
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(int i=0;i<26;i++)
trs[nq][i]=trs[q][i];
while(p!=0&&trs[p][c]==q)
{
trs[p][c]=nq;
p=fa[p];
}
}
}
su[la]=1;
}
int fr[1000010],ne[1000010],v[1000010],bs=0;
void addb(int a,int b)
{
v[bs]=b;
ne[bs]=fr[a];
fr[a]=bs++;
}
void build()
{
for(int i=1;i<=sl;i++)
fr[i]=-1;
for(int i=2;i<=sl;i++)
addb(fa[i],i);
}
void dfs0(int u)
{
for(int i=fr[u];i!=-1;i=ne[i])
{
dfs0(v[i]);
su[u]|=su[v[i]];
}
}
void dfs1(int u)
{
for(int i=fr[u];i!=-1;i=ne[i])
{
dfs1(v[i]);
su[u]+=su[v[i]];
}
}
void dfs2(int u)
{
if(dp[u])
return;
dp[u]=su[u];
for(int i=0;i<26;i++)
{
if(trs[u][i])
{
dfs2(trs[u][i]);
dp[u]+=dp[trs[u][i]];
}
}
}
char zf[500010];
int main()
{
int t,k,u=1;
scanf("%s%d%d",zf,&t,&k);
for(int i=0;zf[i]!=0;i++)
insert(zf[i]-'a');
build();
if(t==0)dfs0(1);
else dfs1(1);
dfs2(1);
if(dp[1]-su[1]<k)
{
printf("-1");
return 0;
}
while(1)
{
if(u!=1)
{
if(su[u]>=k)
break;
k-=su[u];
}
int i;
for(i=0;i<26;i++)
{
if(trs[u][i]==0)
continue;
if(dp[trs[u][i]]>=k)
break;
k-=dp[trs[u][i]];
}
printf("%c",i+'a');
u=trs[u][i];
}
return 0;
}
[TJOI2015]弦论(第k小子串)的更多相关文章
- 「BZOJ3998」[TJOI2015] 弦论(第K小子串)
https://www.lydsy.com/JudgeOnline/problem.php?id=3998 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input ...
- HDU 5008 求第k小子串
本题要求第k小的distinct子串,可以根据height数组,二分出这个第k小子串所在后缀的位置信息.由于题目要求子串起始下标尽可能小.所以再在rank数组中,二分出与当前后缀LCP大于等于所求子串 ...
- SPOJ SUBLEX 求第k小子串
题目大意: 对于一个给定字符串,找到其所有不同的子串中排第k小的子串 先构建后缀自动机,然后我们可以将整个后缀自动机看做是一个DAG图,那么我们先进行拓扑排序得到 *b[N] 对于每个节点记录一个sc ...
- Lexicographical Substring Search (spoj7259) (sam(后缀自动机)+第k小子串)
Little Daniel loves to play with strings! He always finds different ways to have fun with strings! K ...
- k小子串 SPOJ - SUBLEX 2
题意: 求字典序第K大的子串 题解: 先求出后缀自动机对应节点 // 该节点后面所形成的自字符串的总数 然后直接模拟即可 #include <set> #include <map&g ...
- BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串
http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...
- BZOJ3998 弦论 【SAM】k小子串
BZOJ3998 弦论 给一个字符串,问其第\(K\)小字串是什么 两种形式 1.不同起始位置的相同串只算一次 2.不同起始位置的相同串各算一次 首先建\(SAM\) 所有串的数量就是\(SAM\)中 ...
- BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2152 Solved: 716[Submit][Status] ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
随机推荐
- TypeScript 高级类型 类(class)
传统的JavaScript程序使用函数和基于原型的继承来创建可重用的组件,但对于熟悉使用面向对象方式的程序员来讲就有些棘手,因为他们用的是基于类的继承并且对象是由类构建出来的. 从ECMAScript ...
- (二)linux 学习 -- 探究操作系统
The Linux Command Line 读书笔记 - 部分内容来自 http://billie66.github.io/TLCL/book/chap04.html 文章目录 ls 命令进阶 `l ...
- Python17之函数、类、模块、包、库
一.函数 一个拥有名称.参数和返回值的代码块. 需要主动调用,否则不会执行,可以通过参数和返回值与其它程序进行交互 二.类 用来描述具有相同的属性和方法的对象集合.它定义了该集合中每个对象所共有的属性 ...
- Python——成员变量
一.类变量 在类命名空间内定义的变量就属于类变量,python允许使用类来修改.读取类变量. 例: class a: b = '我是类变量' def c(self): print (a.b) # 通过 ...
- codeforce 849D. Make a Permutation!
D. Make a Permutation! time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- core直接获取报异常数据
报异常直接跳转到/Home/Error [ResponseCache(Duration = , Location = ResponseCacheLocation.None, NoStore = tru ...
- GIL与线程进程小知识点
一 .GIL全局解释器 GIL是一个互斥锁:保证数据的安全(以牺牲效率来换取数据的安全)阻止同一个进程内多个线程同时执行(不能并行但是能够实现并发)并发:看起来像同时进行的GIL全局解释器存在的原因是 ...
- 编译安装的httpd实现服务脚本,通过service和chkconfig进行管理
把编译安装的httpd 实现服务脚本,通过service和chkconfig 进行管理 1 编译安装httpd 把httpd编译安装在/app/httpd/目录下. 2 在/etc/rc.d/init ...
- Interval 用法总结
语法:INTERVAL 'integer [- integer]' {YEAR | MONTH} [(precision)][TO {YEAR | MONTH}] 该数据类型常用来表示一段时间差, 注 ...
- C++——inline function
前言 当代码写复杂后,一定会封装出大量的函数,这会导致两个问题: ①函数越多,栈的消耗也越厉害 疑问:为什么代码复杂了.函数变多了,栈消耗的就很厉害? 答:因为这会导致函数的调用深度可能会很深,比如: ...