hdu2993之斜率dp+二分查找
MAX Average Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5825 Accepted Submission(s): 1446
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
10 6
6 4 2 10 3 8 5 9 4 1
6.50
直接斜率DP:O(N)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=100000+10;
int n,k;
int s[MAX],q[MAX];
double dp[MAX],sum[MAX]; double GetY(int i,int j){
return sum[i]-sum[j];
} int GetX(int i,int j){
return i-j;
} double DP(){
int head=0,tail=1;
q[head]=0;
double ans=0;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i]*1.0;
for(int i=k;i<=n;++i){
int j=i-k;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
while(head+1<tail && GetY(i,q[head])*GetX(i,q[head+1])<=GetY(i,q[head+1])*GetX(i,q[head]))++head;
dp[i]=(sum[i]-sum[q[head]])/(i-q[head]);
ans=max(ans,dp[i]);
}
return ans;
} int input(){//加速外挂
char ch=' ';
int num=0;
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar();
return num;
} int main(){
while(~scanf("%d%d",&n,&k)){
for(int i=1;i<=n;++i)s[i]=input();
printf("%0.2lf\n",DP());
}
return 0;
} 斜率DP+二分查找:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=100000+10;
int n,k;
int s[MAX],q[MAX];
LL sum[MAX]; LL GetY(int i,int j){
return sum[i]-sum[j];
} int GetX(int i,int j){
return i-j;
} LL check(int mid,int i){
return GetY(i,q[mid+1])*GetX(q[mid+1],q[mid])-GetY(q[mid+1],q[mid])*GetX(i,q[mid+1]);
} int search(int l,int r,int i){
//由于斜率单调递增
/*int top=r;
while(l<=r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点
if(l == r && l == top)return q[l];//这里一定要注意假设切点是最后一个点须要另判,由于mid+1不存在会出错
int mid=(l+r)>>1;
if(check(mid,i)<0)r=mid-1;
else l=mid+1;
}*/
while(l<r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点
int mid=(l+r)>>1;
if(check(mid,i)<0)r=mid;
else l=mid+1;
}
return q[l];
} double DP(){
int head=0,tail=1,p;
q[head]=0;
double ans=0,dp;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i];
for(int i=k;i<=n;++i){
int j=i-k;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
p=search(head,tail-1,i);//依据相邻点与i点的斜率之差二分查找切点
dp=(sum[i]-sum[p])*1.0/(i-p);
if(dp>ans)ans=dp;
}
return ans;
} int input(){//加速外挂
char ch=' ';
int num=0;
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar();
return num;
} int main(){
while(~scanf("%d%d",&n,&k)){
for(int i=1;i<=n;++i)s[i]=input();
printf("%0.2lf\n",DP());
}
return 0;
}
hdu2993之斜率dp+二分查找的更多相关文章
- D - Pearls HDU - 1300 斜率dp+二分
D - Pearls HDU - 1300 这个题目也是一个比较裸的斜率dp,依照之前可以推一下这个公式,这个很好推 这个注意题目已经按照价格升序排列序,所以还是前缀和还是单调的. sum[i] 表示 ...
- BZOJ2726【SDOI2012】任务安排(斜率优化Dp+二分查找)
由题目条件显然可以得到状态 f[i][j] 表示以 i 为结尾且 i 后作为断点,共做了 j 次分组的最小代价. 因此转移变得很显然:f[i][j]=min{f[k][j-1]+(s×j+sumT[i ...
- [SDOI2012]任务安排 BZOJ2726 斜率优化+二分查找
网上的题解...状态就没有一个和我一样的...这让我有些无从下手... 分析: 我们考虑,正常的斜率优化满足x(i)单调递增,k(i)单调递增,那么我们就可以只用维护一个单调队列满足对于当前的x(i) ...
- B - Lawrence HDU - 2829 斜率dp dp转移方程不好写
B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...
- usaco No Change, 2013 Nov 不找零(二分查找+状压dp)
Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身 ...
- 斜率DP个人理解
斜率DP 斜率DP的一版模式:给你一个序列,至多或分成m段,每段有花费和限制,问符合情况的最小花费是多少: 一版都用到sum[],所以符合单调,然后就可以用斜率优化了,很模板的东西: 如果看不懂可以先 ...
- 斜率DP题目
uva 12524 题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi; 问把n个点的东西合并成k个 ...
- 【二分查找最优解】FZU 2056 最大正方形
题意:现在有一个n*m的矩阵A,在A中找一个H*H的正方形,使得其面积最大且该正方形元素的和不大于 limit. 分析:开始以为是DP或者二维RMQ,其实用二分就可以做出来: 在输入时构造元素和矩阵d ...
- hdu3586 Information Disturbing 树形DP+二分
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3586 题目大意:给定n个敌方据点,编号1为司令部,其他点各有一条边相连构成一棵树,每条边都有一个权值c ...
随机推荐
- Spring+Spring MVC+MyBatis框架集成
目录 一.新建一个基于Maven的Web项目 二.创建数据库与表 三.添加依赖包 四.新建POJO实体层 五.新建MyBatis SQL映射层 六.JUnit测试数据访问 七.完成Spring整合My ...
- jquery多种方式实现输入框input输入时的onput,onpropertychange,onchange触发事件及区别
有关inputs输入内容的事件监听,一般我们会想到下面几个关键词:onput,onpropertychange,onchange onput与onchange的一个区分 onput:该事件在 < ...
- SQL中锁表语句简单理解(针对于一个表)
锁定数据库的一个表 复制代码代码如下: SELECT * FROM table WITH (HOLDLOCK) 注意: 锁定数据库的一个表的区别 复制代码代码如下: SELECT * FROM tab ...
- 【分享】jQuery无插件实现 鼠标拖动图片切换 功能
前言 我就想随便叨逼叨几句,爱看就看几句,不爱看就直接跳过看正文就好啦~ 这个方法是仿写页面时我自己研究出来,可能有比我更简单的方法. 但我不管,因为我没查我不知道,我就觉得我的最好啦,耶耶耶~ 效果 ...
- thinphp原生异步分页
异步分页: $sql="............"; $result=$m->query($sql); $count =count($result); $page ...
- 某互联网后台自动化组合测试框架RobotFramework+Python+Sikuli
一.RobotFramework 1.工具介绍: Robotframework在测试中作为组织测试用例和BDD关键字的平台,主要使用RIDE进行管理,它不是一个工具,而仅仅是一个框架,使用Python ...
- tsung压力测试——tcp测试tsung.xml配置模版说明
<?xml version="1.0"?> <!DOCTYPE tsung SYSTEM "/usr/local/share/tsung/tsung-1 ...
- Ansible(一) 配置安装
puppet ruby开发 salt python开发,有客户端,使用Rabbitmq消息队列,支持并发,在机器数量很多时效果比ansible好. ansible python开发, 没有客户端,基于 ...
- lua API函数大全
Lua5.1中的API函数 lua_State* luaL_newstate()Lua脚本的编译执行是相互独立的,在不同的线程上执行.通过luaL_newstate()函数可以申请一个虚拟机,返回指针 ...
- 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验
JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...