图论中DFS与BFS的区别、用法、详解?
写在最前的三点:
1、所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次。
2、实现bfs和dfs都需要解决的一个问题就是如何存储图。一般有两种方法:邻接矩阵和邻接表。这里为简单起
见,均采用邻接矩阵存储,说白了也就是二维数组。
3、本文章的小测试部分的测试实例是下图:
一、深度优先搜索遍历
1、从顶点v出发深度遍历图G的算法
① 访问v
② 依次从顶点v未被访问的邻接点出发深度遍历。
2、一点心得:dfs算法最大特色就在于其递归特性,使得算法代码简洁。但也由于递归使得算法难以理解,原因
在于递归使得初学者难以把握程序运行到何处了!一点建议就是先学好递归,把握函数调用是的种种。
3、算法代码:
- #include
- using namespace std;
- int a[11][11];
- bool visited[11];
- void store_graph() //邻接矩阵存储图
- {
- int i,j;
- for(i=1;i<=10;i++)
- for(j=1;j<=10;j++)
- cin>>a[i][j];
- }
- void dfs_graph() //深度遍历图
- {
- void dfs(int v);
- memset(visited,false,sizeof(visited));
- for(int i=1;i<=10;i++) //遍历每个顶点是为了防止图不连通时无法访问每个顶点
- if(visited[i]==false)
- dfs(i);
- }
- void dfs(int v) //深度遍历顶点
- {
- int Adj(int x);
- cout<<v<<" "; //访问顶点v
- visited[v]=true;
- int adj=Adj(v);
- while(adj!=0)
- {
- if(visited[adj]==false)
- dfs(adj); //递归调用是实现深度遍历的关键所在
- adj=Adj(v);
- }
- }
- int Adj(int x) //求邻接点
- {
- for(int i=1;i<=10;i++)
- if(a[x][i]==1 && visited[i]==false)
- return i;
- return 0;
- }
- int main()
- {
- cout<<"初始化图:"<<endl;
- store_graph();
- cout<<"dfs遍历结果:"<<endl;
- dfs_graph();
- return 0;
- }
4、小测试
二、广度优先搜索遍历
1、从顶点v出发遍历图G的算法买描述如下:
①访问v
②假设最近一层的访问顶点依次为vi1,vi2,vi3...vik,则依次访问vi1,vi2,vi3...vik的未被访问的邻接点
③重复②知道没有未被访问的邻接点为止
2、一点心得:bfs算法其实就是一种层次遍历算法。从算法描述可以看到该算法要用到队列这一数据结构。我这
里用STL中的实现。该算法由于不是递归算法,所以程序流程是清晰的。
3、算法代码:
- #include
- #include
- using namespace std;
- int a[11][11];
- bool visited[11];
- void store_graph()
- {
- for(int i=1;i<=10;i++)
- for(int j=1;j<=10;j++)
- cin>>a[i][j];
- }
- void bfs_graph()
- {
- void bfs(int v);
- memset(visited,false,sizeof(visited));
- for(int i=1;i<=10;i++)
- if(visited[i]==false)
- bfs(i);
- }
- void bfs(int v)
- {
- int Adj(int x);
- queue<<span
class="datatypes" style="margin: 0px; padding: 0px; border: none;
color: rgb(46, 139, 87); background-color: inherit; font-weight:
bold;">int> myqueue; - int adj,temp;
- cout<<v<<" ";
- visited[v]=true;
- myqueue.push(v);
- while(!myqueue.empty()) //队列非空表示还有顶点未遍历到
- {
- temp=myqueue.front(); //获得队列头元素
- myqueue.pop(); //头元素出对
- adj=Adj(temp);
- while(adj!=0)
- {
- if(visited[adj]==false)
- {
- cout<<adj<<" ";
- visited[adj]=true;
- myqueue.push(adj); //进对
- }
- adj=Adj(temp);
- }
- }
- }
- int Adj(int x)
- {
- for(int i=1;i<=10;i++)
- if(a[x][i]==1 && visited[i]==false)
- return i;
- return 0;
- }
- int main()
- {
- cout<<"初始化图:"<<endl;
- store_graph();
- cout<<"bfs遍历结果:"<<endl;
- bfs_graph();
- return 0;
- }
4、小测试:
图论中DFS与BFS的区别、用法、详解?的更多相关文章
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- CSS中伪类及伪元素用法详解
CSS中伪类及伪元素用法详解 伪类的分类及作用: 注:该表引自W3School教程 伪元素的分类及作用: 接下来让博主通过一些生动的实例(之前的作业或小作品)来说明几种常用伪类的用法和效果,其他的 ...
- Python中生成器和yield语句的用法详解
Python中生成器和yield语句的用法详解 在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" ...
- SVN组成中trunk,branches and tags功能用法详解
SVN组成中trunk,branches and tags功能用法详解 我相信初学开发在SVN作为版本管理时,都估计没可能考虑到如何灵活的运用SVN来管理开发代码的版本,下面我就摘录一篇文章来简单说 ...
- Javascript中call和apply的区别与详解
在js中call和apply它们的作用都是将函数绑定到另外一个对象上去运行,两者仅在定义参数方式有所区别,下面我来给大家介绍一下call和apply用法: 在web前端开发过程中,我们经常需要改变th ...
- Python3 中 configparser 模块解析配置的用法详解
configparser 简介 configparser 是 Pyhton 标准库中用来解析配置文件的模块,并且内置方法和字典非常接近.Python2.x 中名为 ConfigParser,3.x 已 ...
- oracle中的exists 和not exists 用法详解
有两个简单例子,以说明 “exists”和“in”的效率问题 1) select * from T1 where exists(select 1 from T2 where T1.a=T2.a) ; ...
- oracle中的exists 和not exists 用法详解(转)
有两个简单例子,以说明 “exists”和“in”的效率问题 1) select * from T1 where exists(select 1 from T2 where T1.a=T2.a) ; ...
- 转:Android中的Handler的机制与用法详解
注:Message类的用法: message的几个参数都可以携带数据,其中arg1与arg2可以携带int类型,what是用户自定义的int型,这样接受者可以了解这个消息的信息. 说明:使用Messa ...
随机推荐
- Oracle中dblink如何使用
Oracle中dblink应用小结Oracle应用服务器OS 1.查看数据库的global_name SELECT * FROM GLOBAL_NAME; 2.查看global ...
- Form表单中method=post/get两种数据传输的方式的区别
Form提供了两种数据传输的方式——get和post.虽然它们都是数据的提交方式,但是在实际传输时确有很大的不同,并且可能会对数据产生严重的影响.虽然为了方便的得到变量值,Web容器已经屏蔽了二者的一 ...
- Linux 粘着位(sticky bit)
当设置粘着位时只有root或者owner才能删除.重命名文件. 示例: 用户apple默认组为fruit. [root@titan ~]# id apple uid=1001(apple) gid=1 ...
- SqQueue(环状队列(顺序表结构))
template<typename ElemType> class SqQueue { protected: int count; int front,rear; int maxSize; ...
- Oracle 11g DG手工switchover切换标准化流程
Oracle 11g DG手工switchover切换标准化流程 环境:RHEL 6.5 + Oracle GI 11.2.0.4 + Oracle DB 11.2.0.4 Primary RAC(2 ...
- mybatis 详解(九)------ 一级缓存、二级缓存
上一章节,我们讲解了通过mybatis的懒加载来提高查询效率,那么除了懒加载,还有什么方法能提高查询效率呢?这就是我们本章讲的缓存. mybatis 为我们提供了一级缓存和二级缓存,可以通过下图来理解 ...
- [算法题] Reverse Linked List
题目内容 题目来源:LeetCode Reverse a singly linked list. 题目思路 这个属于经典问题,链表反转的思路基本上已经非常固定了.有两种非常常见的方法:1.三指针法 2 ...
- Linux操作系统-命令-free
在看过网友写的一篇名为<Buffer和Cache的区别>http://zhumeng8337797.blog.163.com/blog/static/1007689142011102447 ...
- Linux - 简明Shell编程03 - 字符串(String)
脚本地址 https://github.com/anliven/L-Shell/tree/master/Shell-Basics 示例脚本及注释 #!/bin/bash str="Shell ...
- dll的两种加载方式(pend)+ delayload
看过关于动态库的调用例子,于是决定动手做一做:dll的对外接口声明头文件,Mydll.h: //Mydll.h #include <stdio.h> #include <stdlib ...