机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法
对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为:
##最小二乘法
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy.optimize import leastsq '''
设置样本数据,真实数据需要在这里处理
'''
##样本数据(Xi,Yi),需要转换成数组(列表)形式
Xi=np.array([1,2,3,4,5,6])
#Yi=np.array([9,18,31,48,69,94])
Yi=np.array([9.1,18.3,32,47,69.5,94.8]) '''
设定拟合函数和偏差函数
函数的形状确定过程:
1.先画样本图像
2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)
''' ##需要拟合的函数func :指定函数的形状
def func(p,x):
a,b,c=p
return a*x*x+b*x+c ##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
def error(p,x,y):
return func(p,x)-y '''
主要部分:附带部分说明
1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
2.官网的原话(第二个值):Value of the cost function at the solution
3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3)
4.返回值元组中第一个值的数量跟需要求解的参数的数量一致
''' #k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
p0=[10,10,10] #把error函数中除了p0以外的参数打包到args中(使用要求)
Para=leastsq(error,p0,args=(Xi,Yi)) #读取结果
a,b,c=Para[0]
print("a=",a,"b=",b,"c=",c)
print("cost:"+str(Para[1]))
print("求解的拟合直线为:")
print("y="+str(round(a,2))+"x*x+"+str(round(b,2))+"x+"+str(c)) '''
绘图,看拟合效果.
matplotlib默认不支持中文,label设置中文的话需要另行设置
如果报错,改成英文就可以
''' #画样本点
plt.figure(figsize=(8,6)) ##指定图像比例: 8:6
plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) #画拟合直线
x=np.linspace(0,12,100) ##在0-15直接画100个连续点
y=a*x*x+b*x+c ##函数式
plt.plot(x,y,color="red",label="拟合直线",linewidth=2)
plt.legend() #绘制图例
plt.show()
运行结果:
a= 2.06607141425 b= 2.5975001036 c= 4.68999985496
cost:1
求解的拟合直线为:
y=2.07x*x+2.6x+4.68999985496
在R中的拟合过程:(在控制台直接敲入或者放入脚本都可以)
###设置函数形式
func<-function(a,b,c){
a*x*x+b*x+c
}
###设置样本数据
x<-c(1,2,3,4,5,6)
y<-c(9.1,18.3,32,47,69.5,94.8)
###把样本数据转换为符合nls函数需要的格式
d<-data.frame(y,x)
###执行求解过程:如果x,y值完全一一对应,汇报错误(循环次数超过了50这个最大值)
nlmod<-nls(y ~ func(a1,b1,c1),data=d,start=list(a1=1,b1=1,c1=1),trace=F)
###分析结果
summary(nlmod)
运行结果:
机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法的更多相关文章
- 机器学习算法的基本知识(使用Python和R代码)
本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...
- (数据科学学习手札22)主成分分析法在Python与R中的基本功能实现
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函 ...
- python去除列表中重复元素的方法
列表中元素位置的索引用的是L.index 本文实例讲述了Python去除列表中重复元素的方法.分享给大家供大家参考.具体如下: 比较容易记忆的是用内置的set 1 2 3 l1 = ['b','c', ...
- python 和 R 中的整数序列
python 中的 range() 函数是很常用的,R 中相应的函数是 seq(), 其实,R 中的“ :”也能代替 python 中的 range() 函数. 1.生成升序整数序列 python: ...
- python 获取类中除内置方法外的所有方法名
#!/usr/bin/env python# !-*- coding:utf-8 -*- class Menu: def __init__(self): pass def updateProject( ...
- Python及R安装包版本查看方法
R包查询 查询已安装的所有的包:library() 或installed.packages()(括号内为空,区别以上两项) 查询具体包的信息: help(package="pheatmap& ...
- Python 和 R 中的一数多图
R # 一数多图 x <- 2:6 y <- 7:3 y1 <- y +2 opar <- par(no.readonly = TRUE) par(mfrow=c(2, 3)) ...
- Python向excel中写入数据的方法 方法简单
最近做了一项工作需要把处理的数据写入到Excel表格中进行保存,所以在此就简单介绍使用Python如何把数据保存到excel表格中. 数据导入之前需要安装 xlwt依赖包,安装的方法就很简单,直接 p ...
- python文件写中的f.flush()方法
f = open("input.txt", "w") f.write("aaaaaa") f.flush() #强行把缓冲区中的内容放到磁盘 ...
随机推荐
- MATLAB 单变量函数一阶及N阶求导
1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms ...
- 开放才能进步!Angular和Wijmo一起走过的日子
Angular 已成为广受欢迎的前端框架.去年9月份,期待已久的 Angular2 的正式版发布之后,Angular 又迎来了新一轮热潮.伴随着 Angular 这一路走来,Wijmo 一直都是第一个 ...
- 在 Windows 上安装 Hadoop 教程(转)
在 Windows 上安装 Hadoop 教程 一见 2010.1.6 www.hadoopor.com/hadoopor@foxmail.com 1. 安装 JDK 不建议只安装 JRE,而是建议直 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- C++ 头文件系列(fstream)
1. 简介 该头文定义了与文件箱关联的流类的4个模版: basic_filebuf basic_ifstream basic_ofstream basic_fstream 和8个类型: filebuf ...
- [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)
这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...
- [Kafka] - Kafka基本操作命令
Kafka支持的基本命令位于${KAFKA_HOME}/bin文件夹中,主要是kafka-topics.sh命令:Kafka命令参考页面: kafka-0.8.x-帮助文档 -1. 查看帮助信息 b ...
- PHP基础学习(函数一)
PHP(Hypertext Preprocessor):超文本预处理器,一种嵌入在HTML中并且运行在服务器端的脚本语言. var_dump--打印变量相关信息 说明: <?php var_d ...
- php表单修改数据
(接前面写的) 第一个页面xiugai.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...
- Django的URL路由
URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL模式以及要为该URL模式调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于这个URL调用这段代码,对于那 ...