spark2.0系列《一》—— RDD VS. DataFrame VS. DataSet
虽说,spark我也不陌生,之前一直用python跑的spark,基本的core和SQL操作用的也是比较熟练。但是这一切的基础都是在RDD上进行操作,即使是进行SQL操作也是将利用SpaekContext类中的textFile方法读取txt文件返回RDD对象,然后使用SQLContext实例化载利用函数createDataFrame将格式化后的数据转化为dataFrame或者利用createDataset将数据转换为dataset。真不是一般的麻烦。。。话不多说,比如以下python代码示例:
# -*-coding:utf-8-*-
# Created by wuying on 2017/3/28 from pyspark.sql import Row
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.functions import * def create_df(sqlContext, raw_data):
"""
:param row_data: original data
:return: data frame
"""
lineLists = raw_data.map(lambda x: x.split(','))
//筛选部分有用的数据字段作为表头
row_data = lineLists.map(lambda x: Row(
recordCode = x[0],
logicCode = x[1],
deviceCode = x[2],
compId = x[2][:3],
siteId = x[2][:6],
transType = x[4],
cardTime = x[8],
compName = x[12],
siteName = x[13],
carCode = x[14]
)
)
SZT_df = sqlContext.createDataFrame(row_data)
SZT_df.registerTempTable("SZT_df") return SZT_df if __name__ == '__main__':
# Create DataFrame
# Load data from hdfs
inputFile = "P_GJGD_SZT_20170101" //数据来源于地铁打卡
sc = SparkContext(master="local[*]", appName="AppTest", pyFiles=["prepared.py"])
raw_data = sc.textFile(inputFile)
sqlContext = SQLContext(sc)
SZT_df = create_df(sqlContext, raw_data)
print SZT_df.dtypes
1、RDD,英文全称是“Resilient Distributed Dataset”,即弹性分布式数据集,听起来高大上的名字,简而言之就是大数据案例下的一种数据对象,RDD这个API在spark1.0中就已经存在,因此比较老的版本的tutorial中用的都是RDD作为原始数据处理对象,而在spark-shell中已经实例化好的sc对象一般通过加载数据产生的RDD这个对象的基础上进行数据分析。当然,打草稿情况(未接触企业级系统)下RDD API还是足够我们对一般的数据进行转换,清洗以及计数,里面有较为丰富的函数可以调用,比如常用的map, filter, groupBy等等,具体实现见pyspark。所以,这个RDD的简单安全且易于理解使得很多人都是用RDD打开spark这个高大上之神器的大门(包括我~~)。
首先,它不好操作,以我目前的知识水平而言,我宁愿选dataFrame。因为dataFrame方便且高速,比如SQL语句,自从用了SQL,再也不想一步步map,一步步filter了。其次,据说,RDD无论是在集群上执行任务还是存储到硬盘上。它都会默认使用java对象序列化(提高数据操作的性能),而序列化单个java和scala对象的开销过大,并且需要将数据及其结构在各节点之间传输,而生成和销毁个别对象需要进行垃圾收集这期间的开销也非常大。
2、DataFrame。说到dataFrame,我就想到R和pandas(python)中常用的数据框架就是dataFrame,估计后来spark的设计者从R和pandas这个两个数据科学语言中的数据dataFrame中吸取灵感,不同的是dataFrame是从底层出发为大数据应用设计出的RDD的拓展,因此它具有RDD所不具有的几个特性(Spark 1.3以后):
- 处理数据能力从千字节到PB量级不等
- 支持各种数据格式和存储系统
- 通过SPARK SQL Catalyst优化器进行高效率优化和代码生成
- 通过SPARK对所有大数据工具基础架构进行无缝集成
- 提供Python,Scala,Java 和R的api
简而言之,我们可以将dataFrame当作是关系数据库中表或者是R或者Python中的dataFrame数据结构。实际上,有了dataFrame我们相当于spark可以管理数据视图,以后传输数据只要在各个节点穿数据数据而不需要传数据结构,这种方式比java序列化有效的多。
直接上个scala代码瞅瞅:
package cn.sibat.metro
import org.apache.spark.sql.SparkSession /**
* Created by wing1995 on 2017/4/20
*/ object Test {
def main(args: Array[String]) = {
val spark = SparkSession
.builder()
.config("spark.sql.warehouse.dir", "file:/file:E:/bus")
.appName("Spark SQL Test")
.master("local[*]")
.getOrCreate() import spark.implicits._ val df = spark.sparkContext
.textFile("E:\\trafficDataAnalysis\\SZTDataCheck\\testData.txt")
.map(_.split(","))
.map(line => SZT(line(0), line(1), line(2), line(2).substring(0, 3), line(2).substring(0, 6), line(4), line(8), line(12), line(13), line(14)))
.toDF()
df.show()
df.printSchema()
}
} case class SZT(recordCode: String, logicCode: String, terminalCode: String, compId: String, siteId: String,
transType: String, cardTime: String, compName: String, siteName: String, vehicleCode: String
)
代码真是清新可人啊,直接SparkSession实例化然后再怎么转其他格式,怎么读其他数据都可以。。。
3、Dataset(Spark 1.6)
跟DataFrame很像,不是很熟悉,貌似是为了兼容SCALA中的RDD和JAVA的面向对象而设计,事实证明Scala在Spark中的优势是java取代不了的,即使java8已经做出不少改进。然而,Scala作为原生态语言,仍然是Spark使用者的主流。所以,接下来的博客陆续以Scala为主。
个人是比较喜欢简洁而有趣的Scala,为数据科学而设计!
spark2.0系列《一》—— RDD VS. DataFrame VS. DataSet的更多相关文章
- Apache Spark 2.0三种API的传说:RDD、DataFrame和Dataset
Apache Spark吸引广大社区开发者的一个重要原因是:Apache Spark提供极其简单.易用的APIs,支持跨多种语言(比如:Scala.Java.Python和R)来操作大数据. 本文主要 ...
- RDD、DataFrame、Dataset
RDD是Spark建立之初的核心API.RDD是不可变分布式弹性数据集,在Spark集群中可跨节点分区,并提供分布式low-level API来操作RDD,包括transformation和actio ...
- SparkSQL 中 RDD 、DataFrame 、DataSet 三者的区别与联系
一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容 Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by s ...
- 谈谈RDD、DataFrame、Dataset的区别和各自的优势
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spar ...
- RDD、DataFrame、Dataset三者三者之间转换
转化: RDD.DataFrame.Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换 DataFrame/Dataset转RDD: 这个转换很简单 val rdd1=testDF. ...
- Spark RDD、DataFrame和DataSet的区别
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类 ...
- 且谈 Apache Spark 的 API 三剑客:RDD、DataFrame 和 Dataset
作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已 ...
- Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...
- RDD、DataFrame和DataSet的区别
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD ...
- RDD、DataFrame和DataSet
简述 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema.RDD是分布式的 Java对象的集 ...
随机推荐
- ViewPager 滑动一半的判断方法以及左滑右滑判断
做项目的时候,会碰到用viewpager + fragments去实现多页滑动.有些时候需要完成:界面在滑动到一半或是一半以上的时候,需要把title之类的切换到下一个页面.这个时候仅仅依赖Viewp ...
- ELK5.0安装教程
ELK升级后,安装稍微发生了点变化,在Elasticsearch中增加了很多资源上的限制,其他的倒是没什么变化.不过所有的安装都是基于JDK已经安装完的情况,且为1.8版本. 安装Elasticsea ...
- response.sendRedirect 报 java.lang.IllegalStateException 异常的解决思路
今天在进行代码开发的时候,出现了 java.lang.IllegalStateException异常,response.sendRedirect("./DEFAULT.html") ...
- JavaWeb之HTTP协议
一.概念 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器. ...
- ecshop点滴记录
会员中心: 用户中心页面的内容分布在两个模板文件中: user_clips.dwt(包含:欢迎页.我的留言.我的评论.我的标签.收藏商品.缺货登记.添加缺货登 记.我的推荐.单个商品推荐) user_ ...
- 【Android 系统开发】CyanogenMod 13.0 源码下载 编译 ROM 制作 ( 手机平台 : 小米4 | 编译平台 : Ubuntu 14.04 LTS 虚拟机)
分类: Android 系统开发(5) 作者同类文章X 版权声明:本文为博主原创文章 ...
- Influxdb1.2.2安装_Windows
一.文件准备 1.1 文件名称 influxdb-1.2.2_windows_amd64.zip 1.2 下载地址 https://portal.influxdata.com/downloads [注 ...
- MongoDB基础教程系列--第七篇 MongoDB 聚合管道
在讲解聚合管道(Aggregation Pipeline)之前,我们先介绍一下 MongoDB 的聚合功能,聚合操作主要用于对数据的批量处理,往往将记录按条件分组以后,然后再进行一系列操作,例如,求最 ...
- js 模板引擎
template = document.querySelector('#template').innerHTML, result = document.querySelector('.result') ...
- a标签传值乱码问题怎么解?