D. Jerry's Protest

time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.

Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?

Input

The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.

The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.

Output

Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
2
1 2
Output
0.0000000000
Input
3
1 2 10
Output
0.0740740741
Note

In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.

In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability .

题目链接:http://codeforces.com/contest/626/problem/D

题意:给定n个球以及每个球对应的分值a[],现在A和B进行三局比赛,每局比赛两人随机抽取一个球进行比拼,分值高的获胜。现在A胜了两局,B不服输,因为他三局总分高于A。问发生的概率。

分析:首先分值最高为5000,可以考虑枚举分值求概率。假设B胜的那一局胜X分,A胜的两局胜Y分,我们可以考虑枚举X或者Y。以枚举X来说要求X > Y,关键在于求出B一局胜分X概率Pb[X] 以及 A两局胜分Y的概率Pa[Y]。

那么直接暴力就好了,暴力前sort一下。对于第i个球a[i],胜分的球在j(1 <= j < i),把所有胜分求出并统计cnt[]。这样对于一局比拼的胜分T,概率为cnt[T] / (n*(n-1)/2)。

求出一局的胜分,两局也就好求了。对于A而言,两局胜T分显然概率为cnt[a] / (n*(n-1)/2) * cnt[b] / (n*(n-1)/2) 其中(a + b == T)。A两局胜分T,可以O(a[max] * a[max])求出。

这题会爆int,所以。。。。。

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n;
double ans;
ll cnt[N<<],a[N<<],b[N<<];
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
int main()
{
n=read();
for(int i=;i<=n;i++)
a[i]=read();
sort(a+,a++n);
for(int i=;i<=n;i++)
{
for(int j=n-;j>=;j--)
{
cnt[a[i]-a[j]]++;
}
}
ll sum=(n-)*n/;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
b[i+j]+=1ll*cnt[i]*cnt[j];
}
}
for(int i=;i<=;i++)
{
for(int j=i-;j>=;j--)
{
ans+=1.0*cnt[i]*b[j]/sum/sum/sum;
}
}
printf("%.10lf\n",ans);
return ;
}

Codeforces 626D Jerry's Protest(暴力枚举+概率)的更多相关文章

  1. CodeForces 626D Jerry's Protest

    计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...

  2. Codeforces 626D Jerry's Protest 「数学组合」「数学概率」

    题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...

  3. 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力

    D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...

  4. D. Diverse Garland Codeforces Round #535 (Div. 3) 暴力枚举+贪心

    D. Diverse Garland time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  5. codeforces 675B B. Restoring Painting(暴力枚举)

    题目链接: B. Restoring Painting time limit per test 1 second memory limit per test 256 megabytes input s ...

  6. CodeForces - 593A -2Char(思维+暴力枚举)

    Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is th ...

  7. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

  8. Codeforces Round #298 (Div. 2) B. Covered Path 物理题/暴力枚举

    B. Covered Path Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/534/probl ...

  9. Codeforces 425A Sereja and Swaps(暴力枚举)

    题目链接:A. Sereja and Swaps 题意:给定一个序列,能够交换k次,问交换完后的子序列最大值的最大值是多少 思路:暴力枚举每一个区间,然后每一个区间[l,r]之内的值先存在优先队列内, ...

随机推荐

  1. 破解iframe微信推文(图片)防盗链

    $.ajaxPrefilter(function(options) { if(options.crossDomain && jQuery.support.cors) { var htt ...

  2. Function:html结构转字符串形式显示

    //Html结构转字符串形式显示 支持<br>换行 function ToHtmlString(htmlStr) { return toTXT(htmlStr).replace(/\&am ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  4. 单源最短路径(1):Dijkstra 算法

    一:背景 Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出.该算法常用于路由算法或者作为其他图算法的一个子模块.举例来说,如果图中的 ...

  5. golang 如何验证struct字段的数据格式

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/125 假设我们有如下结构体: type User struct ...

  6. (一)DOM 常用操作 —— “查找”节点

    在 DOM 树中,如果想要操作一个节点,那么首先要"查找"到这个节点.查找节点的方法由 Document 接口定义,而该接口由 JavaScript 中的 document 对象实 ...

  7. Cleaner, more elegant, and wrong(翻译)

    Cleaner,more elegant,and wrong 整洁,更优雅,但是错的 并不是因为你看不到错误的产生路径就意味着它不存在. 下面是C#编程书中的一个片段,摘自关于异常处理的章节. try ...

  8. 基于Java Mail 进行发送(带附件和压缩附件)的邮件

    刚进公司的training, 下面是要求: Self-study of Java Mail library:  http://www.oracle.com/technetwork/java/javam ...

  9. Ansible 系列之 Patterns

    Ansible 之 Patterns 1.Ansible中的Patterns决定了我们要管理哪个主机,意思是与哪些主机进行交互. 我们将在Ad-Hoc(Ad-Hoc 是指 临时执行的命令,要结合着模块 ...

  10. Android 7.1 WindowManagerService 屏幕旋转流程分析 (三)

    三.屏幕的绘制 performSurfacePlacement()函数来触发window的绘制,这里最大的循环次数是6,当然一般不会到最大次数就会被Scheduled. final void perf ...