Codeforces 626D Jerry's Protest(暴力枚举+概率)
D. Jerry's Protest
Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.
Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?
The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.
The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.
Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if
.
2
1 2
0.0000000000
3
1 2 10
0.0740740741
In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.
In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability
.
题目链接:http://codeforces.com/contest/626/problem/D
题意:给定n个球以及每个球对应的分值a[],现在A和B进行三局比赛,每局比赛两人随机抽取一个球进行比拼,分值高的获胜。现在A胜了两局,B不服输,因为他三局总分高于A。问发生的概率。
分析:首先分值最高为5000,可以考虑枚举分值求概率。假设B胜的那一局胜X分,A胜的两局胜Y分,我们可以考虑枚举X或者Y。以枚举X来说要求X > Y,关键在于求出B一局胜分X概率Pb[X] 以及 A两局胜分Y的概率Pa[Y]。
那么直接暴力就好了,暴力前sort一下。对于第i个球a[i],胜分的球在j(1 <= j < i),把所有胜分求出并统计cnt[]。这样对于一局比拼的胜分T,概率为cnt[T] / (n*(n-1)/2)。
求出一局的胜分,两局也就好求了。对于A而言,两局胜T分显然概率为cnt[a] / (n*(n-1)/2) * cnt[b] / (n*(n-1)/2) 其中(a + b == T)。A两局胜分T,可以O(a[max] * a[max])求出。
这题会爆int,所以。。。。。

下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n;
double ans;
ll cnt[N<<],a[N<<],b[N<<];
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
int main()
{
n=read();
for(int i=;i<=n;i++)
a[i]=read();
sort(a+,a++n);
for(int i=;i<=n;i++)
{
for(int j=n-;j>=;j--)
{
cnt[a[i]-a[j]]++;
}
}
ll sum=(n-)*n/;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
b[i+j]+=1ll*cnt[i]*cnt[j];
}
}
for(int i=;i<=;i++)
{
for(int j=i-;j>=;j--)
{
ans+=1.0*cnt[i]*b[j]/sum/sum/sum;
}
}
printf("%.10lf\n",ans);
return ;
}
Codeforces 626D Jerry's Protest(暴力枚举+概率)的更多相关文章
- CodeForces 626D Jerry's Protest
计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...
- Codeforces 626D Jerry's Protest 「数学组合」「数学概率」
题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...
- 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力
D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...
- D. Diverse Garland Codeforces Round #535 (Div. 3) 暴力枚举+贪心
D. Diverse Garland time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- codeforces 675B B. Restoring Painting(暴力枚举)
题目链接: B. Restoring Painting time limit per test 1 second memory limit per test 256 megabytes input s ...
- CodeForces - 593A -2Char(思维+暴力枚举)
Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is th ...
- Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举
题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...
- Codeforces Round #298 (Div. 2) B. Covered Path 物理题/暴力枚举
B. Covered Path Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/534/probl ...
- Codeforces 425A Sereja and Swaps(暴力枚举)
题目链接:A. Sereja and Swaps 题意:给定一个序列,能够交换k次,问交换完后的子序列最大值的最大值是多少 思路:暴力枚举每一个区间,然后每一个区间[l,r]之内的值先存在优先队列内, ...
随机推荐
- JAVA中的设计模式一(单例模式)
单例模式有以下特点: 1.单例类只能有一个实例. 2.单例类必须自己创建自己的唯一实例. 3.单例类必须给所有其他对象提供这一实例. 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个 ...
- Mysql 锁基础
本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/53 lock与latch 在数据库中,lock与latch都可以 ...
- bzoj 4819: [Sdoi2017]新生舞会
Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买一个男生和一个女生一起跳舞,互为舞伴.Cathy收集了这些同学之间 ...
- Cat 跨线程之 TaggedTransaction 用法和原理分析
代码 package com.dianping.cat.message.internal; import com.dianping.cat.Cat; import com.dianping.cat.m ...
- mybatis源码分析(一)
mybatis源码分析(sqlSessionFactory生成过程) 1. mybatis框架在现在各个IT公司的使用不用多说,这几天看了mybatis的一些源码,赶紧做个笔记. 2. 看源码从一个d ...
- 解决NTPD漏洞,升级Ntpd版本
关于解决漏洞的问题我就不详说了,主要就是升级版本.这里我们就直接简单记录下步骤: 1.升级 使用root用户登录系统进入到/home/guankong ,上传ntp-4.2.8p9-1.el6.x86 ...
- js 停止事件冒泡 阻止浏览器的默认行为(阻止a标签跳转 )
在前端开发工作中,由于浏览器兼容性等问题,我们会经常用到"停止事件冒泡"和"阻止浏览器默认行为". 1..停止事件冒泡 JavaScript代码 //如果提供了 ...
- [编织消息框架][netty源码分析]14 PoolChunk 的 PoolSubpage
final class PoolSubpage<T> implements PoolSubpageMetric { //该page分配的chunk final PoolChunk<T ...
- jQuery中事件对象e的事件冒泡用法示例(事件冒泡与阻止冒泡)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- C# .net中json字符串和对象之间的转化方法
http://blog.csdn.net/xuexiaodong009/article/details/46998069 json作为作为一种最常用的数据,应用很广泛,在.net中如何把一个对象转化为 ...