Codeforces 626D Jerry's Protest(暴力枚举+概率)
D. Jerry's Protest
Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.
Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?
The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.
The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.
Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
2
1 2
0.0000000000
3
1 2 10
0.0740740741
In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.
In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability .
题目链接:http://codeforces.com/contest/626/problem/D
题意:给定n个球以及每个球对应的分值a[],现在A和B进行三局比赛,每局比赛两人随机抽取一个球进行比拼,分值高的获胜。现在A胜了两局,B不服输,因为他三局总分高于A。问发生的概率。
分析:首先分值最高为5000,可以考虑枚举分值求概率。假设B胜的那一局胜X分,A胜的两局胜Y分,我们可以考虑枚举X或者Y。以枚举X来说要求X > Y,关键在于求出B一局胜分X概率Pb[X] 以及 A两局胜分Y的概率Pa[Y]。
那么直接暴力就好了,暴力前sort一下。对于第i个球a[i],胜分的球在j(1 <= j < i),把所有胜分求出并统计cnt[]。这样对于一局比拼的胜分T,概率为cnt[T] / (n*(n-1)/2)。
求出一局的胜分,两局也就好求了。对于A而言,两局胜T分显然概率为cnt[a] / (n*(n-1)/2) * cnt[b] / (n*(n-1)/2) 其中(a + b == T)。A两局胜分T,可以O(a[max] * a[max])求出。
这题会爆int,所以。。。。。
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n;
double ans;
ll cnt[N<<],a[N<<],b[N<<];
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
int main()
{
n=read();
for(int i=;i<=n;i++)
a[i]=read();
sort(a+,a++n);
for(int i=;i<=n;i++)
{
for(int j=n-;j>=;j--)
{
cnt[a[i]-a[j]]++;
}
}
ll sum=(n-)*n/;
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
b[i+j]+=1ll*cnt[i]*cnt[j];
}
}
for(int i=;i<=;i++)
{
for(int j=i-;j>=;j--)
{
ans+=1.0*cnt[i]*b[j]/sum/sum/sum;
}
}
printf("%.10lf\n",ans);
return ;
}
Codeforces 626D Jerry's Protest(暴力枚举+概率)的更多相关文章
- CodeForces 626D Jerry's Protest
计算前两盘A赢,最后一盘B赢的情况下,B获得的球的值总和大于A获得的球总和值的概率. 存储每一对球的差值有几个,然后处理一下前缀和,暴力枚举就好了...... #include<cstdio&g ...
- Codeforces 626D Jerry's Protest 「数学组合」「数学概率」
题意: 一个袋子里装了n个球,每个球都有编号.甲乙二人从每次随机得从袋子里不放回的取出一个球,如果甲取出的球比乙取出的球编号大则甲胜,否则乙胜.保证球的编号xi各不相同.每轮比赛完了之后把取出的两球放 ...
- 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力
D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...
- D. Diverse Garland Codeforces Round #535 (Div. 3) 暴力枚举+贪心
D. Diverse Garland time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- codeforces 675B B. Restoring Painting(暴力枚举)
题目链接: B. Restoring Painting time limit per test 1 second memory limit per test 256 megabytes input s ...
- CodeForces - 593A -2Char(思维+暴力枚举)
Andrew often reads articles in his favorite magazine 2Char. The main feature of these articles is th ...
- Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举
题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...
- Codeforces Round #298 (Div. 2) B. Covered Path 物理题/暴力枚举
B. Covered Path Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/534/probl ...
- Codeforces 425A Sereja and Swaps(暴力枚举)
题目链接:A. Sereja and Swaps 题意:给定一个序列,能够交换k次,问交换完后的子序列最大值的最大值是多少 思路:暴力枚举每一个区间,然后每一个区间[l,r]之内的值先存在优先队列内, ...
随机推荐
- windos10安装mongodb并配置
想了想还是把这个写上吧,毕竟网上的教程有不少坑的. 首先下载mongodb,如果你嫌官网慢,那么你可以去我的百度云下载 链接:http://pan.baidu.com/s/1pKEWTBX 密码:v3 ...
- API接口开发简述
作为最流行的服务端语言PHP(PHP: Hypertext Preprocessor),在开发API方面,是很简单且极具优势的.API(Application Programming Interfac ...
- Mac 终端——常用命令语
mac系统如何显示和隐藏文件 苹果Mac OS X操作系统下,隐藏文件是否显示有很多种设置方法,最简单的要算在Mac终端输入命令.显示/隐藏Mac隐藏文件命令如下(注意其中的空格并且区分大小写): 显 ...
- Spring任务调度之Quartz集成
推荐一个博客:http://blog.csdn.net/column/details/14251.html 基本概念 Job:是一个接口,只有一个方法void execute(JobExecution ...
- 谈谈序列化—实体bean一定要实现Serializable接口?
导读:最近在做项目的过程中,发现一个问题,就是我们最开始的时候,传递参数包括返回类型,都有map类型.但是由于map每次都要匹配key值,很麻烦.所以在之后就将参数传递和返回类型全都改成了实体bean ...
- ELK开机启动 service文件内容
为了实现ELK的3部分开机启动,可以添加各项服务对应的service文件,再通过systemctl enable XXX实现ELK所有服务开机启动. Elasticsearch elasticsear ...
- oracle里的优化器
1.1 oracle里的优化器 RBO(Rule-Based-Optinizer):基于规则的优化器 CBO(Cost-Based-Optinizer): 基于成本的优化器 SQL语句执行过程 待执行 ...
- 我搞zabbix的那两天(2)
摘要:前一篇(我搞zabbix的那两天(1))我介绍了Zabbix的安装部署以及遇到的问题,这一篇将介绍zabbix 使用及短信等告警实现!!! Zabbix主界面及汉化方法介绍 1.1 初始化主界面 ...
- php isset和empty方法的区别
我总结了下面几点区别,直接上代码: empty方法: 变量不存在,返回true 变量存在,值为空,返回true 变量存在,值不为空,返回false function empty1(){ //变量不存在 ...
- [Spark性能调优] 第三章 : Spark 2.1.0 中 Sort-Based Shuffle 产生的内幕
本課主題 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 ...