We studied a very powerful approach for customer segmentation in the previous post, which is based on the customer’s lifecycle. We used two metrics: frequency and recency. It is also possible and very helpful to add monetary value to our segmentation. If you havecustomer acquisition cost (CAC) and customer lifetime value (CLV), you can easily add these data to the calculations.

We will create the same data sample as in the previous post, but with two added data frames:

  • cac, our expenses for each customer acquisition,
  • gr.margin, gross margin of each product.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# loading libraries
library(dplyr)
library(reshape2)
library(ggplot2)
 
# creating data sample
set.seed(10)
data <- data.frame(orderId=sample(c(1:1000), 5000, replace=TRUE),
product=sample(c('NULL','a','b','c'), 5000, replace=TRUE,
prob=c(0.15, 0.65, 0.3, 0.15)))
order <- data.frame(orderId=c(1:1000),
clientId=sample(c(1:300), 1000, replace=TRUE))
gender <- data.frame(clientId=c(1:300),
gender=sample(c('male', 'female'), 300, replace=TRUE, prob=c(0.40, 0.60)))
date <- data.frame(orderId=c(1:1000),
orderdate=sample((1:100), 1000, replace=TRUE))
orders <- merge(data, order, by='orderId')
orders <- merge(orders, gender, by='clientId')
orders <- merge(orders, date, by='orderId')
orders <- orders[orders$product!='NULL', ]
orders$orderdate <- as.Date(orders$orderdate, origin="2012-01-01")
 
# creating data frames with CAC and Gross margin
cac <- data.frame(clientId=unique(orders$clientId), cac=sample(c(10:15), 289, replace=TRUE))
gr.margin <- data.frame(product=c('a', 'b', 'c'), grossmarg=c(1, 2, 3))
 
rm(data, date, order, gender)

Next, we will calculate CLV to date (actual amount that we earned) using gross margin values and orders of the products. We will use the following code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# reporting date
today <- as.Date('2012-04-11', format='%Y-%m-%d')
 
# calculating customer lifetime value
orders <- merge(orders, gr.margin, by='product')
 
clv <- orders %>%
group_by(clientId) %>%
summarise(clv=sum(grossmarg))
 
# processing data
orders <- dcast(orders, orderId + clientId + gender + orderdate ~ product, value.var='product', fun.aggregate=length)
 
orders <- orders %>%
group_by(clientId) %>%
mutate(frequency=n(),
recency=as.numeric(today-orderdate)) %>%
filter(orderdate==max(orderdate)) %>%
filter(orderId==max(orderId))
 
orders.segm <- orders %>%
mutate(segm.freq=ifelse(between(frequency, 1, 1), '1',
ifelse(between(frequency, 2, 2), '2',
ifelse(between(frequency, 3, 3), '3',
ifelse(between(frequency, 4, 4), '4',
ifelse(between(frequency, 5, 5), '5', '>5')))))) %>%
mutate(segm.rec=ifelse(between(recency, 0, 6), '0-6 days',
ifelse(between(recency, 7, 13), '7-13 days',
ifelse(between(recency, 14, 19), '14-19 days',
ifelse(between(recency, 20, 45), '20-45 days',
ifelse(between(recency, 46, 80), '46-80 days', '>80 days')))))) %>%
# creating last cart feature
mutate(cart=paste(ifelse(a!=0, 'a', ''),
ifelse(b!=0, 'b', ''),
ifelse(c!=0, 'c', ''), sep='')) %>%
arrange(clientId)
 
# defining order of boundaries
orders.segm$segm.freq <- factor(orders.segm$segm.freq, levels=c('>5', '5', '4', '3', '2', '1'))
orders.segm$segm.rec <- factor(orders.segm$segm.rec, levels=c('>80 days', '46-80 days', '20-45 days', '14-19 days', '7-13 days', '0-6 days'))

Note: if you prefer to use potential/expected/predicted CLV or total CLV (sum of CLV to date and potential CLV) you can adapt this code or find the example in the next post.

In addition, we need to merge orders.segm with the CAC and CLV data, and combine the data with the segments. We will calculate total CAC and CLV to date, as well as their average with the following code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
orders.segm <- merge(orders.segm, cac, by='clientId')
orders.segm <- merge(orders.segm, clv, by='clientId')
 
lcg.clv <- orders.segm %>%
group_by(segm.rec, segm.freq) %>%
summarise(quantity=n(),
# calculating cumulative CAC and CLV
cac=sum(cac),
clv=sum(clv)) %>%
ungroup() %>%
# calculating CAC and CLV per client
mutate(cac1=round(cac/quantity, 2),
clv1=round(clv/quantity, 2))
 
lcg.clv <- melt(lcg.clv, id.vars=c('segm.rec', 'segm.freq', 'quantity'))

Ok, let’s plot two charts: the first one representing the totals and the second one representing the averages:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
ggplot(lcg.clv[lcg.clv$variable %in% c('clv', 'cac'), ], aes(x=variable, y=value, fill=variable)) +
theme_bw() +
theme(panel.grid = element_blank())+
geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +
geom_text(aes(y=value, label=value), size=4) +
facet_grid(segm.freq ~ segm.rec) +
ggtitle("LifeCycle Grids - CLV vs CAC (total)")
ggplot(lcg.clv[lcg.clv$variable %in% c('clv1', 'cac1'), ], aes(x=variable, y=value, fill=variable)) +
theme_bw() +
theme(panel.grid = element_blank())+
geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) +
geom_text(aes(y=value, label=value), size=4) +
facet_grid(segm.freq ~ segm.rec) +
ggtitle("LifeCycle Grids - CLV vs CAC (average)")

You can find in the grid that the width of bars depends on the number of customers. I think these visualizations are very helpful. You can see the difference between CLV to dateand CAC and make decisions about on paid campaigns or initiatives like:

  • does it make sense to spend extra money to reactivate some customers (e.g. those who are in the “1 order / >80 days“ grid or those who are in the “>5 orders / 20-45 days“ grid)?,
  • how much money is appropriate to spend?,
  • and so on.

Therefore, we have got a very interesting visualization. We can analyze and make decisions based on the three customer lifecycle metrics: recency, frequency andmonetary value.

Thank you for reading this!

转自:http://analyzecore.com/2015/02/19/customer-segmentation-lifecycle-grids-clv-and-cac-with-r/

Customer segmentation – LifeCycle Grids, CLV and CAC with R(转)的更多相关文章

  1. Customer segmentation – LifeCycle Grids with R(转)

    I want to share a very powerful approach for customer segmentation in this post. It is based on cust ...

  2. Cohort Analysis and LifeCycle Grids mixed segmentation with R(转)

    This is the third post about LifeCycle Grids. You can find the first post about the sense of LifeCyc ...

  3. Appboy 基于 MongoDB 的数据密集型实践

    摘要:Appboy 正在过手机等新兴渠道尝试一种新的方法,让机构可以与顾客建立更好的关系,可以说是市场自动化产业的一个前沿探索者.在移动端探索上,该公司已经取得了一定的成功,知名产品有 iHeartM ...

  4. ML.NET教程之客户细分(聚类问题)

    理解问题 客户细分需要解决的问题是按照客户之间的相似特征区分不同客户群体.这个问题的先决条件中没有可供使用的客户分类列表,只有客户的人物画像. 数据集 已有的数据是公司的历史商业活动记录以及客户的购买 ...

  5. CRM 建设方案(01):CRM基础

    CRM 客户关系管理系统基础 客户关系管理简称CRM(Customer Relationship Management).CRM概念引入中国已有数年,其字面意思是客户关系管理,但其深层的内涵却有着许多 ...

  6. python excel 文件合并

    Combining Data From Multiple Excel Files Introduction A common task for python and pandas is to auto ...

  7. Ninject之旅之六:Ninject约定

    摘要 在小的应用系统中一个一个注册一些服务类型不怎么困难.但是,如果是一个实际的有上百个服务的应用程序呢?约定配置允许我们使用约定绑定一组服务,而不用一个一个分别绑定. 要使用约定配置,需要添加Nin ...

  8. 沈阳润才教育CRM

    一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...

  9. python 全栈开发,Day107(CRM初始,权限组件之权限控制,权限系统表设计)

    一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...

随机推荐

  1. [Python] Spark平台下实现分布式AC自动机(一)

    转载请注明出处:http://www.cnblogs.com/kirai/ 作者:Kirai 零.问题的提出 最近希望在分布式平台上实现一个AC自动机,但是如何在这样的分布式平台上表示这样的非线性数据 ...

  2. java多线程基本概述(三)——同步方法

    非线程安全其实是在多个线程对同一个对象实例的变量进行并发访问的时候发生,产生的后果就是脏读,也就是取到的数据是修改过的.而线程安全就是获得的实例变量的值是经过同步处理的,从而不会出现脏读现象. 1.1 ...

  3. Eclipse 安装反编译插件

    前言:在实际的开发中几乎都会使用到一些框架来辅助项目的开发工作,对于一些框架的代码我们总怀有一些好奇之心,想一探究竟,有源码当然更好了,对于有些JAR包中的代码我们就需要利用反编译工具来看一下了,下面 ...

  4. 每天一个linux命令(63):Linux中zip压缩和unzip解压缩命令详解

    文章转自:http://www.jb51.net/LINUXjishu/105916.html 1.把/home目录下面的mydata目录压缩为mydata.zipzip -r mydata.zip ...

  5. linux下安装node

    经过一番的折腾终于在linux上安装了node,记录下来以免忘记 1.下载node 去官网下载最新的linux版本下对应node.js,node-v6.10.2-linux-x64.tar.gz 2. ...

  6. 排序算法合集 python

    直接选择.插入排序 直接选择排序和直接插入排序类似,都将数据分为有序区和无序区,所不同的是直接播放排序是将无序区的第一个元素直接插入到有序区以形成一个更大的有序区,而直接选择排序是从无序区选一个最小的 ...

  7. CentOS_5.6下使用cmake编译MySQL_5.5.11

    MySQL 最新的版本5.5.11需要cmake编译安装,估计以后的版本也会采用这种方式,网上找了一些安装方法有些地方是错的,自己整理一份 所以特地记录一下安装步骤及过程,以供参考!1 mysql 5 ...

  8. 不完全CSS3图解

    温故而知新.用XMind总结了下CSS3,打钩的代表比较常用的.希望对大家整体上理解CSS3有所帮助吧.

  9. 蓝桥杯-循环节长度-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  10. 跨域资源共享CORS详解

    简介 CORS是一个W3C标准,全称是"跨域资源共享"(Cross-origin resource sharing). 它允许浏览器向跨源服务器,发出XMLHttpRequest请 ...