有一列数,要对其进行排序(升序)。排序只能通过交换来实现。每次交换,可以选择这列数中的任意二个,交换他们的位置,并且交换的代价为二个数的和。排序的总代价是排序过程中所有交换代价之和。先要求计算,对于任意给出的数列,要将其排成升序所需的最小代价。

输入描述 Input Description

输入数据有两行组成。第一行一个数n,表示这列数共有n个数组成,第二行n个互不相同的整数(都是小于1000的正整数),表示这列数

输入可能包含多组测试数据(少于50组),对于每个输入数据均需要给出对应的输出

输出描述 Output Description

对于每个输入数据,输出最小代价。格式为Case t: min

其中t为数据的编号,从1开始,min为这个数据的最小代价

样例输入 Sample Input

3

3 2 1

4

8 1 2 4

样例输出 Sample Output

Case 1: 4

Case 2: 17

数据范围及提示 Data Size & Hint

n<=1000

分析:一般涉及到这种位置交换的都与置换群有联系。

假设这里有一组数3 7 4 1 2 6 5

则排序后应该是1 2 3 4 5 6 7

与原数组比较 3 7 4 1 2 6 5

则这个两个数组就可以表示一个置换群,可以理解成元素的一一映射,“1”——>"3","2"——>"7"以此类推

这里介绍几个概念:

轮换:即映射的循环,如例子中1-3-4-1就是一个循环,用(1,3,4)表示

分解置换群:把置换群分解成若干个轮换

如例子分解出来就是:(1,3,4)(2,7,5)(6)

然后我们分析一下:"1"想去"3"的位置,"3"想去"4“的位置,"4"想去"1"的位置;"2"想去"7"的位置,"7”想去"5“的位置,"5"想去"2”的位置,以此类推……可以发现不同的轮换互不影响,也就是说我们可以分开来单独处理,这同样也暗示我们了这题应该是贪心思路,因为这里局部最优就导致一定全局最优

下面考虑(1,3,4):

我们的最终目标是把(1,3,4)通过若干交换变成(1)(3)(4)(每个元素都找准了自己位置),现在我们需要花费最少的代价交换它们

既然每个元素都想去它后面那个元素所在的元素位置(特殊的,最后一个想去第一个)。很自然而然的想到,拿其中一个数不断跟前面的数换(换到第一位接着换到最后一位),经过n-1次交换后每个元素都回到了自己应该的位置,即分解成了单元素轮换,而既然要它代价最小,肯定就是拿这个轮换中最小的数换。这样正确吗?

这里介绍一个引理:一个元素个数为n的轮换(n元环),分解成单元素轮换至少需要n-1交换

证明:

可以用数学归纳法证明:
 a、一元环,不需要动. 0次。
  b、二元环,直接交换即可.1次。
  c、三元环,第一次交换,总是把环拆成一个二元与一个一元。然后再拆二元环. 1+1=2次.
  d、四元环,第一次交换,有两种情况:拆成两个二环,或拆成一个三元环与一个一元环。
      无论哪种情况. 1+1+1=3. 1+2+0=3.
  e、假设拆k元环以内的环都只需要k-1次可以完成.现在来拆k+1元环。
     显然,无论交换哪两个,总是把k元环拆成了两个环,根据假设,拆这两个环所需的次数
   都是他们的元数-1.两个环的元数合起来为k+1,次数合起来就是k+1-2.再加上前面拆成
   两个环需要一次,就是k+1-2+1=k次。
 故命题得证。

恩到了这里我们发现我们的做法很好,保证了交换次数最少,同时代价也是最小的,但是这样真的可以吗!?

比如说,对100,101,102,103,104,99.如果按照上述方法来排序。代价为100+101+102+103+104+99*5次.实际上,为了避免每次移动99这样一个大数,如果外界还有一个很小的数,如1.我们可以第一步先把1跟99交换,然后再用1代替99完成那n-1次交换。完成后,再把1跟99换回去。这样代价为100+101+102+103+104+1*5 +(1+99)*2.显然代价要小

晕,这不禁让我们对这个做法有点怀疑,还有反例吗!?

不过仔细想想我们的思路是没有错的,反例存在的原因并不是各个轮换之间有影响而造成了,如果这样那我们的做法就肯定是错误的了。我们发现上述反例的最优解除了最开始和最末的交换不同之外,其他做法是一样的。于是我们意识到了问题所在,得不到最优解的原因是“交换的数字不够小”,有数字交换同一个轮换中的元素可以得到更小花费!!!!!!这个比轮换中最小的数还小的数在哪里!!!!!!!!!!!!!??????????是整个置换群(即整个数组)中的最小的!!

于是我们想到了有两种可能:

  1)取这个轮换中的最小数作上述操作

  2)将整个置换群中的最小数m和这个轮换中的最小数m'交换;将m作上述操作;将m和m'换回来(为了对结果正确性无影响)

/*PS:为何是将轮换中最小数和置换群中最小数换,用第二小数换不行吗?

这里很好理解:假设换的不是最小数m'而是m''(m''>m'),则总代价就为m+m''+m*(n-1)+s-m+m+m''=(2m+m*(n-1)+s-m)+2m''>(2m+m*(n-1)+s-m)+2m'(即换最小数m'的代价),故应该是轮换中最小数和置换群中最小数换*/

算法总结:

①暴力分解置换群成若干轮换

②对于每个轮换单独处理:

  1、求出这个轮换中最小值m‘和这个轮换中各个元素的总和s以及个数n,则上述第一种方案的代价为:Cost1=m'*(n-1)+s-m'

  2、求出整个数组中最小值m,则上述第二种方案的代价为:Cost2=m+m'+m*(n-1)+s-m+m+m'

  3、去Cost1和Cost2中的最小值作为此轮换处理结果,加入到最后结果中

注意:再回归到这个题目,注意到数字不是连续的,所以要离散处理

[wikioi 2845]排序的代价(置换群)的更多相关文章

  1. CodeVS 2845 排序的代价

    Description 给你一个数列使他递增,交换两个元素的代价为两个数的和,最小化代价. Sol 置换群+离散化. 使一个数列恢复递增顺序,那么,他和他要到达的位置的数需要交换,这样就形成了一个置换 ...

  2. 【CodeVS 2845】排序的代价

    http://codevs.cn/problem/2845/ 好难的题啊qwq 没想到把排好序的数组的第i位和原数组的第i位的值看成一个单射函数,这样这是一个长度为n的置换. 对于置换的其中一个循环, ...

  3. wikioi 1076 排序 【这里含冒泡、选择、插入以及快排库函数的调用】

    /*=================================================================== 1076 排序 题目描述 Description 给出n和n ...

  4. BZOJ1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 387  Solved: 215[S ...

  5. 深度排序与alpha混合

    原文: https://blogs.msdn.microsoft.com/shawnhar/2009/02/18/depth-sorting-alpha-blended-objects/ 翻译:李现民 ...

  6. 【转载】Alpha混合物体的深度排序

    原文:Alpha混合物体的深度排序 先说个题外话, 本来我想解答一下最近Creators Club论坛上经常出现的一个问题, 意外的是在网上竟然找不到什么全面的答案.. 这是个有着复杂答案的简单问题: ...

  7. 深度排序与alpha混合 【转】

      翻译:李现民 最后修改:2012-07-03 原文:Depth sorting alpha blended objects 先说个题外话,本来我想回答在 Creators Club论坛上的一个常见 ...

  8. 贪心+拓扑排序 AOJ 2456 Usoperanto

    题目传送门 题意:给出一条链,比如x连到y,x一定要在y的左边,且代价是这条链经过的点的权值和,问如何排序使得代价最小 分析:类似拓扑排序,先把入度为0的点入队,把指向该点的所有点按照权值排序,保证这 ...

  9. bzoj usaco 金组水题题解(1)

    UPD:我真不是想骗访问量TAT..一开始没注意总长度写着写着网页崩了王仓(其实中午的时候就时常开始卡了= =)....损失了2h(幸好长一点的都单独开了一篇)....吓得赶紧分成两坨....TAT. ...

随机推荐

  1. (四) openwrt单个ipk编译过程

    Tags : Makefile 本周是成胖子每周一博的第五周. 更好的阅读体验,请点击这里 [TOC] 前言 前一篇博客中,我们已经知道整个openwrt的编译顺序,本文我们来探讨与开发者息息相关的单 ...

  2. linux内核模块

    一个简单的驱动 模块的使用能使linux内核便于裁剪,根据不同的应用需求得到一个最小的内核,同时调试内核驱动也更为方便,比如如果调试i2c驱动,如果不采用模块的方式,那么每次修改i2c驱动就得编译整个 ...

  3. pycharm 4.5在debian下安装

    1.去官网下载linux下的Tar包,下载后解压. 2.直接进入解压后的folder里面找bin下面的pycharm.sh,执行后发现没有任何反应. 3.查询资料发现是因为pycharm需要sun j ...

  4. docker containerd shim分析

    // containerd-shim is a small shim that sits in front of a runtime implementation that allows it to ...

  5. 孙鑫视频学习:改变窗口过程函数中出现error C2440错误的解决方法

    在Visual Studio 2010中,即使代码是完完全全按照孙鑫视频中的敲,也会在出现error C2440,这是因为开发平台由VC6.0升级至VS2010,需要将原有的项目迁移.VS2010对消 ...

  6. URAL 1416 Confidential --最小生成树与次小生成树

    题意:求一幅无向图的最小生成树与最小生成树,不存在输出-1 解法:用Kruskal求最小生成树,标记用过的边.求次小生成树时,依次枚举用过的边,将其去除后再求最小生成树,得出所有情况下的最小的生成树就 ...

  7. 测试 Mono 安装

    测试 Mono 安装 为了测试核心编译器(mcs)和运行时(mono),应该创建一个简单的程序并编译它.可以在喜欢的任何文本编辑器中创建程序.这里采用一种快速而简陋的方法创建该文件(虽然没有任何格式化 ...

  8. 反序列化存入数据库里面的session数据

    session数据存取的方法可通过session.serialize_handler方法来判断,反序列化可通过下面的unserialize方法,参考http://stackoverflow.com/q ...

  9. JMeter学习参数化User Defined Variables与User Parameters

    偶然发现JMeter中有两个元件(User Defined Variables与User Parameters)很相近,刚开始时我也没注意,两者有什么不同.使用时却发现两者使用场景有些不同,现在小结一 ...

  10. Android签名机制:生成keystore、签名、查看签名信息

    转自:http://www.ourunix.org/post/146.html