题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004

分析:

1、确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上说每种颜色的个数都是一定的,所以肯定是Burnside了

2、确定置换群:首先输入的那么多肯定是每个都是一个置换,那么要不要对每个叠加呢?不用的,因为题目上说“输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态”。所以对于读入的所有就是整个置换群啦

3、根据Burnside引理,最后的结果==∑每个置换“不动点”数目/总置换个数,那么关键也就是求出读入的每一行对应的置换中“不动点”个数,注意这个“不动点”不是  1 2 3 —— 3 2 1这种一个不动点"2",而指的是不动的染色方案,也就是整体来看的。

注意到一个置换里的循环中的每个位置是等价,也就是说染色的时候这些位置肯定是要染相同颜色的。

不妨把一个置换里的每个循环当成一个集合,那么问题就变成了,给你若干个集合,要你用3种颜色对集合染色,每个集合要染成相同颜色,且每种颜色的个数满足要求的方案个数,这才是真正的“不动点”

那么怎么求……递推!!!设f[i][j][k]表示到目前为止染了i个红色,j个蓝色,k个绿色的方案数,那么f[i][j][k]=f[i-size[m]][j][k]+f[i][j-size[m]][k]+f[i][j][k-size[m]]{size[m]表示当前置换第m个循环中元素个数}

那么就gg了……

哦不对还没gg……最后输出还要弄乘法逆元……

[bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)的更多相关文章

  1. BZOJ 1004 Cards(Burnside引理+DP)

    因为有着色数的限制,故使用Burnside引理. 添加一个元置换(1,2,,,n)形成m+1种置换,对于每个置换求出循环节的个数, 每个循环节的长度. 则ans=sigma(f(i))/(m+1) % ...

  2. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  3. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  4. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  5. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  6. bzoj 1004 burnside 引理+DP

    对于burnside引理需要枚举染色,这道题属于burnside的一种简单求解的方法,就是polya,我们可以使每一种置换中的循环节中的元素的颜色都相同,那么这样的话就可以直接DP了,我们可以将m个置 ...

  7. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  8. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  9. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

随机推荐

  1. Eclipse和MyEclipse 手动设置 Java代码 注释模板

    一.目的 1.  为什么需要注释规范? 注释规范对于程序员而言尤为重要,有以下几个原因: 一个软件的生命周期中,80%的花费在于维护. 几乎没有任何一个软件,在其整个生命周期中,均由最初的开发人员来维 ...

  2. mrunit for wordcount demo

    import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.had ...

  3. 1644 免费馅饼 题解(c++)(S.B.S.)

    1644 免费馅饼(巴蜀oj上的编号) 题面:          SERKOI最新推出了一种叫做“免费馅饼”的游戏.         游戏在一个舞台上进行.舞台的宽度为W格,天幕的高度为H格,游戏者占 ...

  4. 如何用dos命令运行testng

    写好的自动化程序怎么让它运行呢,总不能每次都启动eclipse吧,下面就先介绍一种用dos命令运行testNG的方法. 1.把项目打成jar吧,我用的是Fat jar工具. 2.在电脑的某个盘建一个文 ...

  5. 【读书笔记《Android游戏编程之从零开始》】14.游戏开发基础(Bitmap 位图的渲染与操作)

    Bitmap 是图形类,Android 系统支持的图片格式有 png.jpg.bmp 等. 对位图操作在游戏中是很重要的知识点,比如游戏中需要两张除了大小之外其他完全相同的图,那么如果会对位图进行缩放 ...

  6. J2EE笔记3

    7. MVC 设计模式. 6. 和属性相关的方法: 1). 方法 void setAttribute(String name, Object o): 设置属性 Object getAttribute( ...

  7. POJ 1269 Intersecting Lines --计算几何

    题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交. 解法: 简单几何. 重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0 不相交: 不满足重合的情况下叉积为 ...

  8. Android系列之网络(三)----使用HttpClient发送HTTP请求(分别通过GET和POST方法发送数据)

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  9. 第12章 纤程(Fiber)

    12.1 纤程对象的介绍 (1)纤程与线程的比较 比较 线程(Thread) 纤程(Fiber) 实现方式 是个内核对象 在用户模式中实现的一种轻量级的线程,是比线程更小的调度单位. 调度方式 由Mi ...

  10. java 10-4 Scanner方法

    Scanner:用于接收键盘录入数据  常用的两个方法(int举例): public int nextInt():获取一个int类型的值 public String nextLine():获取一个St ...