前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。

python中利用numpy库和scipy库来进行各种数据操作和科学计算。我们可以通过pip来直接安装这两个库

pip install numpy
pip install scipy

以后,只要是在python中进行数字图像处理,我们都需要导入这些包:

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

打开图像并转化为矩阵,并显示:

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/lena.jpg')) #打开图像并转化为数字矩阵
plt.figure("dog")
plt.imshow(img)
plt.axis('off')
plt.show()

调用numpy中的array()函数就可以将PIL对象转换为数组对象。

查看图片信息,可用如下的方法:

print img.shape
print img.dtype
print img.size
print type(img)

如果是RGB图片,那么转换为array之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用

img[i,j,k]

来访问像素值。

例1:打开图片,并随机添加一些椒盐噪声

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/ex.jpg')) #随机生成5000个椒盐
rows,cols,dims=img.shape
for i in range(5000):
x=np.random.randint(0,rows)
y=np.random.randint(0,cols)
img[x,y,:]=255 plt.figure("beauty")
plt.imshow(img)
plt.axis('off')
plt.show()

例2:将lena图像二值化,像素值大于128的变为1,否则变为0

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/pic/lena.jpg').convert('L')) rows,cols=img.shape
for i in range(rows):
for j in range(cols):
if (img[i,j]<=128):
img[i,j]=0
else:
img[i,j]=1 plt.figure("lena")
plt.imshow(img,cmap='gray')
plt.axis('off')
plt.show()

如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。下面是有关灰度图像的一些例子:

img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行

img[:,i] = 100 # 将第 i 列的所有数值设为 100

img[:100,:50].sum() # 计算前 100 行、前 50 列所有数值的和

img[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)

img[i].mean() # 第 i 行所有数值的平均值

img[:,-1] # 最后一列

img[-2,:] (or im[-2]) # 倒数第二行

用python简单处理图片(4):图像中的像素访问的更多相关文章

  1. 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整

    今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...

  2. 使用 Python 识别并提取图像中的文字

    1. 介绍 介绍使用 python 进行图像的文字识别,将图像中的文字提取出来,可以帮助我们完成很多有趣的事情. 2. 必备工具 tesseract-ocr 下载地址: https://github. ...

  3. (转)使用Python和OpenCV检测图像中的物体并将物体裁剪下来

    原文链接:https://blog.csdn.net/liqiancao/article/details/55670749 介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的 ...

  4. 访问图像中的像素[OpenCV 笔记16]

    再更一发好久没更过的OpenCV,不过其实写到这个部分对计算机视觉算法有所了解的应该可以做到用什么查什么了,所以后面可能会更的慢一点吧,既然开了新坑,还是机器学习更有研究价值吧... 图像在内存中的存 ...

  5. 用python简单处理图片(1):打开\显示\保存图像

    一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此, ...

  6. 用python简单处理图片(2):图像通道\几何变换\裁剪

    一.图像通道 1.彩色图像转灰度图 from PIL import Image import matplotlib.pyplot as plt img=Image.open('d:/ex.jpg') ...

  7. 用python简单处理图片(5):图像直方图

    我们先来看两个函数reshape和flatten: 假设我们先生成一个一维数组: vec=np.arange(15) print vec 显示为: [ 0 1 2 3 4 5 6 7 8 9 10 1 ...

  8. 用python简单处理图片(3):添加水印

    python版本:3.4 Pillow版本:3.0 一.添加文字水印 from PIL import Image, ImageDraw,ImageFont im = Image.open(" ...

  9. opencv 3 core组件进阶(1 访问图像中的像素)

    访问图像像素的三类方法 ·方法一 指针访问:C操作符[ ]; ·方法二 迭代器iterator; ·方法三 动态地址计算. #include <opencv2/core/core.hpp> ...

随机推荐

  1. git proxy

    git config --global http.proxy http://127.0.0.1:1080 git config --global https.proxy https://127.0.0 ...

  2. 软件工程(c编码实践) 学习笔记(一)

    vim 有三种模式:一般模式,编辑模式,命令模式. -------------------------------------------------------------------------- ...

  3. Linux 下Firefox无法打开在'.domain'之前带有中划线的域名

    问题 Linux系统下的Firefox无法打开在".domain"之前带有中划线的域名 eg:"http://su---.diandian.com/" 问题原因 ...

  4. yum命令指南-yum使用方法

    yum check-update  检查可更新的所有软件包    yum update  下载更新系统已安装的所有软件包    yum upgrade  大规模的版本升级,与yum update不同的 ...

  5. Java API 快速速查宝典

    Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...

  6. AMO olap Test C# generate tsql and mdx

    通过AMO访问online的cube,生成等值的TSql和mdx 自动生成等值的TSQL和MDX进行Cube测试.其中难度比较大的部分是拼接TSQL. 暂时不处理calculations,只除理met ...

  7. Canvas修行之黑客帝国代码雨

    既然是修行,不卖弄关子,不吊胃口,修行成果必须先晒一晒. 下图是我用canvas画的黑客帝国代码雨,想起当年看黑客帝国时,那个代码雨场景让我心旷神怡,大开脑洞,满脑子是那种三维空间,无数0和1像雨一样 ...

  8. [转]jQuery UI Dialog Modal Popup Yes No Confirm example in ASP.Net

    本文转自:http://www.aspsnippets.com/Articles/jQuery-UI-Dialog-Modal-Popup-Yes-No-Confirm-example-in-ASPN ...

  9. 使用LVS实现负载平衡之Windows Server 2008配置

    LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.本项目在1998年5月由章文嵩博士成立,是中国国内最早出现的自由软件项目之一.承载于 II ...

  10. RCNN (Regions with CNN) 目标物检测 Fast RCNN的基础

    Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到 ...