NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。

引入模块

import networkx as nx
print nx

无向图

例1:

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.Graph() #建立一个空的无向图G
G.add_node(1) #添加一个节点1
G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_edge(3,2) #对于无向图,边3-2与边2-3被认为是一条边
print "nodes:", G.nodes() #输出全部的节点: [1, 2, 3]
print "edges:", G.edges() #输出全部的边:[(2, 3)]
print "number of edges:", G.number_of_edges() #输出边的数量:1
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()

输出

nodes: [1, 2, 3]
edges: [(2, 3)]
number of edges: 1

例2:

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_node(1)
G.add_node(2) #加点
G.add_nodes_from([3,4,5,6]) #加点集合
G.add_cycle([1,2,3,4]) #加环
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)]) #加边集合
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

有向图

例1:

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

:有向图和无向图可以互相转换,使用函数:

  • Graph.to_undirected()
  • Graph.to_directed()

例2,例子中把有向图转化为无向图:

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3,4,5,6])
G.add_cycle([1,2,3,4])
G.add_edge(1,3)
G.add_edges_from([(3,5),(3,6),(6,7)])
G = G.to_undirected()
nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()

注意区分以下2例

例3-1

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph() road_nodes = {'a': 1, 'b': 2, 'c': 3}
#road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

例3-2

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt G = nx.DiGraph() #road_nodes = {'a': 1, 'b': 2, 'c': 3}
road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

加权图

有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。

例1:

#!-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph() #建立一个空的无向图G
G.add_edge(2,3) #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #对于无向图,边3-2与边2-3被认为是一条边 print G.get_edge_data(2, 3)
print G.get_edge_data(3, 4)
print G.get_edge_data(3, 5) nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.show()

输出

{}
{'weight': 3.5}
{'weight': 7.0}

经典图论算法计算

计算1:求无向图的任意两点间的最短路径

# -*- coding: cp936 -*-
import networkx as nx
import matplotlib.pyplot as plt #计算1:求无向图的任意两点间的最短路径
G = nx.Graph()
G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])
path = nx.all_pairs_shortest_path(G)
print path[1]

计算2:找图中两个点的最短路径

import networkx as nx
G=nx.Graph()
G.add_nodes_from([1,2,3,4])
G.add_edge(1,2)
G.add_edge(3,4)
try:
n=nx.shortest_path_length(G,1,4)
print n
except nx.NetworkXNoPath:
print 'No path'

强连通、弱连通

  • 强连通:有向图中任意两点v1、v2间存在v1到v2的路径(path)及v2到v1的路径。
  • 弱联通:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

距离

例1:弱连通

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
#G = nx.path_graph(4, create_using=nx.Graph())
#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph()) #默认生成节点0 1 2 3,生成有向变0->1,1->2,2->3
G.add_path([7, 8, 3]) #生成有向边:7->8->3 for c in nx.weakly_connected_components(G):
print c print [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)] nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

执行结果

set([0, 1, 2, 3, 7, 8])
[6]

例2:强连通

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
#G = nx.path_graph(4, create_using=nx.Graph())
#0 1 2 3
G = nx.path_graph(4, create_using=nx.DiGraph())
G.add_path([3, 8, 1]) #for c in nx.strongly_connected_components(G):
# print c
#
#print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)] con = nx.strongly_connected_components(G)
print con
print type(con)
print list(con) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

执行结果

<generator object strongly_connected_components at 0x0000000008AA1D80>
<type 'generator'>
[set([8, 1, 2, 3]), set([0])]

子图

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_path([5, 6, 7, 8])
sub_graph = G.subgraph([5, 6, 8])
#sub_graph = G.subgraph((5, 6, 8)) #ok 一样 nx.draw(sub_graph)
plt.savefig("youxiangtu.png")
plt.show()

条件过滤

#原图

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes)
G.add_edges_from(road_edges) nx.draw(G)
plt.savefig("youxiangtu.png")
plt.show()

#过滤函数

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
def flt_func_draw():
flt_func = lambda d: d['id'] != 1
return flt_func road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges) flt_func = flt_func_draw()
part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d))
nx.draw(part_G)
plt.savefig("youxiangtu.png")
plt.show()

pred,succ

#-*- coding:utf8-*-

import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph() road_nodes = {'a':{'id':}, 'b':{'id':}, 'c':{'id':}}
road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')] G.add_nodes_from(road_nodes.iteritems())
G.add_edges_from(road_edges) print G.nodes()
print G.edges() print "a's pred ", G.pred['a']
print "b's pred ", G.pred['b']
print "c's pred ", G.pred['c']
print "d's pred ", G.pred['d'] print "a's succ ", G.succ['a']
print "b's succ ", G.succ['b']
print "c's succ ", G.succ['c']
print "d's succ ", G.succ['d'] nx.draw(G)
plt.savefig("wuxiangtu.png")
plt.draw()

结果

['a', 'c', 'b', 'd']
[('a', 'c'), ('a', 'b'), ('c', 'd')] a's pred {}
b's pred {'a': {}}
c's pred {'a': {}}
d's pred {'c': {}} a's succ {'c': {}, 'b': {}}
b's succ {}
c's succ {'d': {}}
d's succ {}

  

python复杂网络分析库NetworkX的更多相关文章

  1. python复杂网络库networkx:基础

    http://blog.csdn.net/pipisorry/article/details/49839251 其它复杂网络绘图库 [SNAP for python] [ArcGIS,Python,网 ...

  2. python复杂网络库networkx:算法

    http://blog.csdn.net/pipisorry/article/details/54020333 Networks算法Algorithms 最短路径Shortest Paths shor ...

  3. python复杂网络库networkx:绘图draw

    http://blog.csdn.net/pipisorry/article/details/54291831 networkx使用matplotlib绘制函数 draw(G[, pos, ax, h ...

  4. python 各种开源库

    测试开发 来源:https://www.jianshu.com/p/ea6f7fb69501 Web UI测试自动化 splinter - web UI测试工具,基于selnium封装. 链接 sel ...

  5. Python常用的库简单介绍一下

    Python常用的库简单介绍一下fuzzywuzzy ,字符串模糊匹配. esmre ,正则表达式的加速器. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable ...

  6. Python的常用库

    读者您好.今天我将介绍20个属于我常用工具的Python库,我相信你看完之后也会觉得离不开它们.他们是: Requests.Kenneth Reitz写的最富盛名的http库.每个Python程序员都 ...

  7. Python底层socket库

    Python底层socket库将Unix关于网络通信的系统调用对象化处理,是底层函数的高级封装,socket()函数返回一个套接字,它的方法实现了各种套接字系统调用.read与write与Python ...

  8. 【C++实现python字符串函数库】strip、lstrip、rstrip方法

    [C++实现python字符串函数库]strip.lstrip.rstrip方法 这三个方法用于删除字符串首尾处指定的字符,默认删除空白符(包括'\n', '\r', '\t', ' '). s.st ...

  9. 【C++实现python字符串函数库】二:字符串匹配函数startswith与endswith

    [C++实现python字符串函数库]字符串匹配函数startswith与endswith 这两个函数用于匹配字符串的开头或末尾,判断是否包含另一个字符串,它们返回bool值.startswith() ...

随机推荐

  1. node系列:琐碎备忘

    cmd 全局与本地路径 查看:默认 查看本地路径:npm config get cache,默认和nodejs安装目录同一目录 查看全局路径:npm config get prefix,默认c盘app ...

  2. Java学习记录-注解

    注解 一.org.springframework.web.bind.annotation ControllerAdviceCookieValue : 可以把Request header中关于cooki ...

  3. HDU 2087 kmp模板题

    s为主串 t为模板串 求t的nextt 加const #include<stdio.h> #include<string.h> #include<algorithm> ...

  4. CodeForces 621C 数学概率期望计算

    昨天训练赛的题..比划了好久才想出来什么意思 之前想的是暴力for循环求出来然后储存数组 后来又想了想 自己萌的可以.. 思路就是求出来每个人与他的右边的人在一起能拿钱的概率(V(或)的关系)然后*2 ...

  5. ThinkPHP 学习笔记 ( 二 ) 控制器 ( Controller )

    /** * ThinkPHP version 3.1.3 * 部署方式:应用部署 * 文内的 http://localhost/ 由实际主机地址代替 */ 入口文件 index.php: <?p ...

  6. db link的查看创建与删除(转)

    1.查看dblink select owner,object_name from dba_objects where object_type='DATABASE LINK'; 或者 select * ...

  7. excel15个技巧

    自动定时保存Excel中的文件 点击“工具”菜单“自动保存”项,设置自动保存文件夹的间隔时间.如果在“工具”菜单下没有“自动保存”菜单项,那么执行“工具”菜单下“加载宏…”选上“自动保存”,“确定”. ...

  8. Bash 快捷键大全

    快捷键的一些说明: CTRL=C:这个键是指PC键盘上的Ctrl键 ALT=M:这个键是PC键盘上的ALT键,如果你键盘上没有这个键,可以尝试使用ESC键代替 SHIFT=S:此键是PC上的Shift ...

  9. C++ 简易时间类

    .h file #ifndef LIBFRAME_DATETIME_H_ #define LIBFRAME_DATETIME_H_ #include <stdint.h> #include ...

  10. ArcGIS Engine开发之旅03--ArcGIS Engine中的控件

    原文:ArcGIS Engine开发之旅03--ArcGIS Engine中的控件 制图控件,如MapControl.PageLayoutControl,其中MapControl控件主要用于地理数据的 ...