题意: 给一个数的序列,询问一些区间,问区间内与区间其他所有的数都互质的数有多少个。

解法: 直接搞有点难, 所谓正难则反,我们求区间内与其他随便某个数不互质的数有多少个,然后区间长度减去它就是答案了。

那么怎么求区间内与区间其他某个数互质的数的个数(记为cnt)呢? 我们用L[i],R[i]表示在整个序列中左边与 i 最近的与 i 互质的数的位置,R[i]表示右边的,L[i],R[i]我们可以正反扫一遍顺便分解因子,用个pos[]记录很方便地求出。那么区间内的cnt为L[i]或R[i]在区间内的 i 的个数。

令事件 A:i 的 L[i]在区间内    B:i 的 R[i]在区间内, 则答案为

即 cnt = |A|+|B|-|A∩B|

那么

事件A 记为 [L[i],i] 在区间内

事件B 记为 [i,R[i] 在区间内

事件|A∩B| 记为 [L[i],R[i]]在区间内

用三个vector分别存下三种区间。

解决区间内有多少个区间可以用离线树状数组做。

注意: sort 结构体vector时务必在结构体中内嵌比较函数,手写cmp函数再 sort(v.begin(),v.end(),cmp) 会超时。我也不知道为啥。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#define N 200007 struct node{
int l,r,ind;
node(int _l,int _r,int _ind):l(_l),r(_r),ind(_ind){}
node(){}
bool operator<(const node &B)const{ return r<B.r; }
}Q[N];
vector<node> AB[];
int ans[][N],T[N];
int a[N],pos[N],maxi,L[N],R[N],n,m,c[N]; int cmp(node ka,node kb) { return ka.r < kb.r; }
int lowbit(int x) { return x&-x; } void modify(int x)
{
if(x <= ) return;
while(x <= n) { c[x]++; x += lowbit(x); }
} int getsum(int x)
{
int res = ;
while(x > ) { res += c[x]; x -= lowbit(x); }
return res;
} void init()
{
int i,j;
for(i=;i<=maxi;i++) pos[i] = ;
for(i=;i<=n;i++)
{
int tmp = a[i];
for(j=;j*j<=tmp;j++)
{
if(tmp%j == )
{
L[i] = max(L[i],pos[j]);
pos[j] = i;
while(tmp%j == ) tmp/=j;
}
}
if(tmp != )
{
L[i]=max(L[i],pos[tmp]);
pos[tmp]=i;
}
}
for(i=;i<=maxi;i++) pos[i] = n+;
for(i=n;i>=;i--)
{
int tmp = a[i];
for(j=;j*j<=tmp;j++)
{
if(tmp%j == )
{
R[i] = min(R[i],pos[j]);
pos[j] = i;
while(tmp%j == ) tmp/=j;
}
}
if(tmp != )
{
R[i]=min(R[i],pos[tmp]);
pos[tmp]=i;
}
}
} void GET(int k)
{
memset(c,,sizeof(c));
int i,j = ;
for(i=;i<=m;i++)
{
int L = Q[i].l;
int R = Q[i].r;
int ind = Q[i].ind;
while(j < n && AB[k][j].r <= R)
modify(AB[k][j].l), j++;
ans[k][ind] = getsum(R)-getsum(L-);
}
} int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF && n+m)
{
maxi = ;
memset(ans,,sizeof(ans));
for(i=;i<;i++) AB[i].clear();
for(i=;i<=n;i++)
{
scanf("%d",&a[i]), maxi = max(maxi,a[i]);
L[i] = , R[i] = n+;
}
init();
for(i=;i<=m;i++)
{
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].ind = i;
T[i] = Q[i].r-Q[i].l+;
}
sort(Q+,Q+m+);
for(i=;i<=n;i++)
{
AB[].push_back(node(L[i],i,)); //A : L[i]在区间内的数的个数
AB[].push_back(node(i,R[i],)); //B : R[i]在区间内的数的个数
AB[].push_back(node(L[i],R[i],)); //A交B
}
for(i=;i<;i++)
{
sort(AB[i].begin(),AB[i].end());
GET(i);
}
for(i=;i<=m;i++)
printf("%d\n",T[i]-ans[][i]-ans[][i]+ans[][i]); //容斥原理
}
return ;
}

HDU 4777 Rabbit Kingdom --容斥原理+树状数组的更多相关文章

  1. HDU 4777 Rabbit Kingdom(树状数组)

    HDU 4777 Rabbit Kingdom 题目链接 题意:给定一些序列.每次询问一个区间,求出这个区间和其它数字都互质的数的个数 #include <cstdio> #include ...

  2. HDU 4947 GCD Array 容斥原理+树状数组

    GCD Array Time Limit: 11000/5500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  3. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  4. hdu 5517 Triple(二维树状数组)

    Triple Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  5. HDU 4777 Rabbit Kingdom 树状数组

    分析:找到每一个点的左边离他最近的不互质数,记录下标(L数组),右边一样如此(R数组),预处理 这个过程需要分解质因数O(n*sqrt(n)) 然后离线,按照区间右端点排序 然后扫一遍,对于当前拍好顺 ...

  6. HDU 5792 L - World is Exploding 。容斥原理 + 树状数组 + 离散化

    题目,要求找出有多少对这样的东西,四个数,并且满足num[a]<num[b] &&num[c]>num[d] 要做这题,首先要懂得用树状数组,我设,下面的小于和大于都是严格 ...

  7. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  8. HDU 5862 Counting Intersections (树状数组)

    Counting Intersections 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Description Given ...

  9. hdu 5592 ZYB's Game 树状数组

    ZYB's Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=55 ...

随机推荐

  1. vmware linux top si高以及网卡队列、软负载相关优化

    今日,测试公司自行开发的一rpc中间件,期间发现top si的比例很高,且几乎只有一个cpu是繁忙的,其他均基本为0. 经查,si主要是系统软中断,最后确定是网卡导致的系统中断.于是,往上搜了下资料, ...

  2. c#泛型方法返回null的问题

    c#的泛型方法实现和java实现有点不同,在java中,所有的泛型方法运行时类型必须是引用类型,所以和非泛型一样可以返回null. 但是c#中有点不同,可以同时是值类型和引用类型,而值类型不能赋值nu ...

  3. C++ 面向对象的三个特点--继承与封装(一)

    面试的时候经常会有很多概念性的东西,许久不用都会很生疏,特意整理一下方便自己以后不记得了可以查看一下,也顺便帮助自己复习一下. 概念 继承是面向对象程序设计的一个重要特性,它允许在既有类的基础上创建新 ...

  4. js中的排序

    不靠谱的sort() 众所周知,js中的sort()排序是按字母表顺序排序的,这就导致如下现象: var a = [9,60,111,55,8,7777]; a.sort(); alert(a); / ...

  5. .NET的内存限制

    之前做点云的.Net程序,经常因为数据量大出现Outofmemory异常,但是看看任务管理器,内存还有好多剩余的,在网上搜了一下发现这样的解释. 不管系统内存多大,目前一个.NET 对象最多只能够使用 ...

  6. 在ALV中更新数据库表

    FORM usercommand USING ucomm TYPE sy-ucomm selfield TYPE slis_selfield. DATA: lr_grid TYPE REF TO cl ...

  7. ArcGIS10.2下调试10.1的程序

    听说:10.2比10.1好,诚然,安装了10.2打开一看是这样的,以为是下载的版本问题,后来才以现是显示设置的问题. 因为,我使用的两个显示器,屏幕有点大,所以,就改成中等了,不然怎么可截取下面的截图 ...

  8. ArcGIS知乎上有哪些干货可以推荐?

    http://zhihu.esrichina.com.cn/question/12709

  9. 【读书笔记】iOS-验证应用内支付的凭证注意事项

    1,简单来说,越狱后的手机由于没有沙盒作为保护,黑客可以对系统进行任意的修改,所以,在支付过程中,苹果返回的已付款成功的凭证可能是伪造的.客户端拿到付款凭证之后,还需要将凭证上传到自己的服务器,进行二 ...

  10. 【转】IOS屏幕旋转与View的transform属性之间的关系,比较底层

    iTouch,iPhone,iPad设置都是支持旋转的,如果我们的程序能够根据不同的方向做出不同的布局,体验会更好. 如何设置程序支持旋转呢,通常我们会在程序的info.plist中进行设置Suppo ...