归并排序采用的是递归来实现,属于“分而治之”,将目标数组从中间一分为二,之后分别对这两个数组进行排序,排序完毕之后再将排好序的两个数组“归并”到一起,归并排序最重要的也就是这个“归并”的过程,归并的过程中需要额外的跟需要归并的两个数组长度一致的空间,比如需要规定的数组分别为: [3, 6, 8, 11] 和 [1, 3, 12, 15] (虽然逻辑上被划为为两个数组,但实际上这些元素还是位于原来数组中的,只是通过一些 index 将其划分成两个数组,原数组为 [3, 6, 8, 11, 1, 3, 12, 15 ,我们设置三个指针 lo, mid, high 分别为 0,3,7 就可以实现逻辑上的子数组划分)那么需要的额外数组的长度为 4 + 4 = 8 。

  归并的过程可以简要地概括为如下:

1) 将两个子数组中的元素复制到新数组 copiedArray 中,以前面提到的例子为例,则 copiedArray = [3, 6, 8, 11, 1, 3, 12, 15] ;

2) 设置两个指针分别指向原子数组中对应的第一个元素,假定这两个指针取名为 leftIdx 和 rightIdx ,则 leftIdx = 0 (对应 copiedArray 中的第一个元素 [3] ), rightIdx = 4 (对应 copiedArray 中的第五个元素 [1] );

3) 比较 leftIdx 和 rightIdx 指向的数组元素值,选取其中较小的一个并将其值赋给原数组中对应的位置 i ,赋值完毕后分别对参与赋值的这两个索引做自增 1 操作,如果 leftIdx 或 rigthIdx 值已经达到对应数组的末尾,则余下只需要将剩下数组的元素按顺序 copy 到余下的位置即可。

  下面给个归并的具体实例:

第一趟:

辅助数组 [21 , 28, 39 | 35, 38] (数组被拆分为左右两个子数组,以 | 分隔开)

[21 ,  ,  ,  ,  ] (第一次 21 与 35 比较 , 左边子数组胜出, leftIdx = 0 , i = 0 )

第二趟:

辅助数组 [21, 28 , 39 | 35, 38]

[21 , 28,  ,  ,  ] (第二次 28 与 35 比较,左边子数组胜出, leftIdx = 1 , i = 1 )

第三趟: [21, 28, 39 | 35 , 38]

 [21 , 28 , 35,  ,  ] (第三次 39 与 35 比较,右边子数组胜出, rightIdx = 0 , i = 2 )

第四趟: [21, 28, 39 | 35, 38 ]

 [21 , 28 , 35 , 38,  ] (第四次 39 与 38 比较,右边子数组胜出, rightIdx = 1 , i = 3 )

第五趟: [21, 28, 39 | 35, 38]

 [21 , 28 , 35 , 38 , 39] (第五次时右边子数组已复制完,无需比较 leftIdx = 2 , i = 4 )

  以上便是一次归并的过程,我们可以将整个需要排序的数组做有限次拆分(每次一分为二)直到分为长度为1 的小数组为止,长度为 1 时数组已经不用排序了。在这之后再逆序(由于采用递归)依次对这些数组进行归并操作,直到最后一次归并长度为 n / 2 的子数组,归并完成之后数组排序也完成。

归并排序需要的额外空间是所有排序中最多的,每次归并需要与参与归并的两个数组长度之和相同个元素(为了提供辅助数组)。则可以推断归并排序的空间复杂度为 1 + 2 + 4 + … + n = n * ( n + 2) / 4 (忽略了 n 的奇偶性的判断),时间复杂度比较难估,这里小弟也忘记是多少了(囧)。

  归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作

实现代码:

/**
* 归并排序<br/>
* <ul>
* <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
* <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
* <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
* <li>重复步骤3直到某一指针达到序列尾</li>
* <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
* </ul>
*
* @param numbers
*/
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
/**
* 归并算法实现
*
* @param data
* @param p
* @param q
* @param r
*/
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}

Java算法-归并排序的更多相关文章

  1. java算法----排序----(5)归并排序

    package log; import java.util.Arrays; public class Test4 { /** * java算法---归并排序 * * @param args */ pu ...

  2. java泛型中使用的排序算法——归并排序及分析

    一.引言 我们知道,java中泛型排序使用归并排序或TimSort.归并排序以O(NlogN)最坏时间运行,下面我们分析归并排序过程及分析证明时间复杂度:也会简述为什么java选择归并排序作为泛型的排 ...

  3. Java实现归并排序(转)

    Java实现归并排序  本文转自https://www.cnblogs.com/of-fanruice/p/7678801.html 归并排序 (merge sort) 是一类与插入排序.交换排序.选 ...

  4. JAVA算法系列 冒泡排序

    java算法系列之排序 手写冒泡 冒泡算是最基础的一个排序算法,简单的可以理解为,每一趟都拿i与i+1进行比较,两个for循环,时间复杂度为 O(n^2),同时本例与选择排序进行了比较,选择排序又叫直 ...

  5. JAVA算法系列 快速排序

    java算法系列之排序 手写快排 首先说一下什么是快排,比冒泡效率要高,快排的基本思路是首先找到一个基准元素,比如数组中最左边的那个位置,作为基准元素key,之后在最左边和最右边设立两个哨兵,i 和 ...

  6. 经典排序算法 - 归并排序Merge sort

    经典排序算法 - 归并排序Merge sort 原理,把原始数组分成若干子数组,对每个子数组进行排序, 继续把子数组与子数组合并,合并后仍然有序,直到所有合并完,形成有序的数组 举例 无序数组[6 2 ...

  7. java算法 蓝桥杯 乘法运算

    问题描述 编制一个乘法运算的程序. 从键盘读入2个100以内的正整数,进行乘法运算并以竖式输出. 输入格式 输入只有一行,是两个用空格隔开的数字,均在1~99之间(含1和99). 输出格式 输出为4行 ...

  8. java算法 蓝桥杯 扶老奶奶街

    一共有5个红领巾,编号分别为A.B.C.D.E,老奶奶被他们其中一个扶过了马路. 五个红领巾各自说话: A :我和E都没有扶老奶奶 B :老奶奶是被C和E其中一个扶过大街的 C :老奶奶是被我和D其中 ...

  9. java算法 蓝桥杯 高精度加法

    问题描述 在C/C++语言中,整型所能表示的范围一般为-231到231(大约21亿),即使long long型,一般也只能表示到-263到263.要想计算更加规模的数,就要用软件来扩展了,比如用数组或 ...

随机推荐

  1. CSS3 Filter详解(改变模糊度 亮度 透明度等方法)

    CSS3 Filter(滤镜)属性提供了提供模糊和改变元素颜色的功能.CSS3 Fitler 常用于调整图像的渲染.背景或边框显示效果. -webkit-filter是css3的一个属性,Webkit ...

  2. HTML meta viewport属性详解

    什么是Viewport 手机浏览器是把页面放在一个虚拟的“窗口”(viewport)中,通常这个虚拟的“窗口”(viewport)比屏幕宽,这样就不用把每个网页挤到很小的窗口中(这样会破坏没有针对手机 ...

  3. python中怎么查看当前工作目录和更改工作目录

    查询当前目录:os.getcwd() 更改当前目录:os.chdir()

  4. java11-6 String类的其它功能

    String类的其他功能: 替换功能: String replace(char old,char new) String replace(String old,String new) 去除字符串两空格 ...

  5. 在文本中匹配链接并添加A标签

    (?<!href="|">)(https?:\/\/[\w\-\.!~?&=+\*\'(),\/]+)((?!\<\/\a\>).)* 这个正则可以 ...

  6. usb驱动开发8之配置描述符

    前面分析了usb的四大描述符之端点描述符,接口描述符(每一个接口对应一个功能,与之配备相应驱动),下面是看配置描述符还是看设备描述符呢??我们知道,设备大于配置,配置大于接口,接口可以有多种设置. 我 ...

  7. C#中的默认访问修饰符

    1.命名空间下的元素的默认访问修饰符 public : 同一程序集的其他任何代码或引用该程序集的其他程序集都可以访问该类型或成员.internal : 同一程序集中的任何代码都可以访问该类型或成员,但 ...

  8. 我所知道的HttpContext.Current

    在MVC中,HttpContext.Current是比较常见的对象,可以用它来进行Session,Cache等的保存等.但是它并不是无处不在的,下面就慢慢来揭开它的面纱. 当我们向服务端发送请求的时候 ...

  9. css 兼容

    color:#0000FF\9; ;/*ie6,ie7,ie8*/ *color:#FFFF00;/*ie7*/ _color:#FF0000;/*ie6*/ body:nth-of-type(1) ...

  10. Python解析器源码加密系列之(二):一次使用标准c的FILE*访问内存块的尝试

    摘要:由于近期打算修改Python解释器以实现pyc文件的加密/解密,出于保密的要求,解密之后的数据只能放在内存中,不能写入到文件中.但是后续的解析pyc文件的代码又只能接受FILE*作为入参,所以就 ...