【SCOI2005】繁忙的都市
Description
城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
2.在满足要求1的情况下,改造的道路尽量少。
3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。
任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
Input
第一行有两个整数n,m表示城市有n个交叉路口,m条道路。(1≤n≤50
000,1≤m≤100 000)
接下来m行是对每条道路的描述,u, v,
c表示交叉路口u和v之间有道路相连,分值为c。(1≤c≤10000)
Output
两个整数s,
max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
Sample Input
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
Sample Output
3 6
题意不在复述
老题良心
最小生成树模板 边数自然输出 n - 1

#include<iostream>
#include<cstdio>
#include<algorithm>
#define M 100010
#define LL long long
#define f(i,a,b) for(long long i = (a); i <= (b) ; i++)
using namespace std;
inline long long read()
{
char C = getchar();
long long F = 1, N = 0;
while((C < '0' || C > '9')&&(C != '-')) C = getchar();
if ( C == '-') F = -1,C = getchar();
while(C <= '9' && C >= '0') N = (N << 1) + (N << 3) + (C - 48),C = getchar();
return F*N;
}
long long n,m,fa[M],num,ans;
struct QWQ{
long long x,y,z;
bool operator < (const QWQ & QAQ) const
{
return QAQ.z > z;
}
}edge[M];
long long get(long long x)
{
if(fa[x] == x) return x;
return fa[x] = get(fa[x]);
}
void merge(long long x,long long y)
{
fa[x] = y;
}
int main()
{
n = read();
m = read();
f(i,1,m)
{
edge[i].x = read();
edge[i].y = read();
edge[i].z = read();
}
f(i,1,n) fa[i] = i;
sort(edge + 1,edge + 1 + m );
for(long long i = 1;i <= m && num < n - 1 ;i++)
{
long long left = edge[i].x;
long long right = edge[i].y;
long long left_fa = get(left);
long long right_fa = get(right);
if( left_fa != right_fa )
merge(left_fa,right_fa),num++;
ans = max(ans,edge[i].z);
}
cout<<n-1<<" "<<ans; }
【SCOI2005】繁忙的都市的更多相关文章
- BZOJ 1083: [SCOI2005]繁忙的都市 kruskal
1083: [SCOI2005]繁忙的都市 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1083 Description 城市C是一个非 ...
- BZOJ 1083 [SCOI2005]繁忙的都市
1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1664 Solved: 1080[Submit][Sta ...
- BZOJ 1083: [SCOI2005]繁忙的都市(MST)
裸的最小生成树..直接跑就行了 ---------------------------------------------------------------------- #include<c ...
- 1083: [SCOI2005]繁忙的都市
1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1319 Solved: 878[Submit][Stat ...
- BZOJ 1083: [SCOI2005]繁忙的都市【Kruscal最小生成树裸题】
1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2925 Solved: 1927[Submit][Sta ...
- 【BZOJ1083】[SCOI2005]繁忙的都市(最小生成树)
[BZOJ1083][SCOI2005]繁忙的都市(最小生成树) 题面 BZOJ 洛谷 题解 模板题. #include<iostream> #include<cstdio> ...
- 【bzoj1083】[SCOI2005]繁忙的都市
1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2424 Solved: 1591[Submit][Sta ...
- BZOJ 1083:[SCOI2005]繁忙的都市(最小生成树)
1083: [SCOI2005]繁忙的都市 Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路 ...
- Bzoj 1083: [SCOI2005]繁忙的都市 (最小生成树)
Bzoj 1083: [SCOI2005]繁忙的都市 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1083 此题是最小瓶颈生成树的裸题. ...
- 洛谷—— P2330 [SCOI2005]繁忙的都市
P2330 [SCOI2005]繁忙的都市 题目描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路 ...
随机推荐
- Java(33)IO流的介绍&字节流
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228446.html 博客主页:https://www.cnblogs.com/testero ...
- MySQL 8.0安装 + 配置环境变量 + 连接 cmd
MySQL 安装教程 搜索 MySQL,进入官网,找到 download 点击适用于 window community 版本,点击图中第二个 450.7 M 的安装包进行下载 这里有五个选项,选择第二 ...
- Noip模拟19(炸裂的开始) 2021.7.18
T1 u 差分与前缀的综合练习. 分析数据范围,只能是在修改的时候$O(1)$做到,那么只能是像打标记一样处理那个三角形 正解是建立两个二位前缀和,一个控制竖向,一个控制斜向 每次在三角的左上,右下, ...
- 2021.10.10考试总结[NOIP模拟73]
T1 小L的疑惑 对于\(P_i\),如果所有比\(P_i\)小的数加起来也达不到\(P_i-1\),那么值域肯定不连续.否则设原来值域最大值为\(mx\),则\(P_i\)会让值域最大值增致\(mx ...
- CF375D Tree and Queries 题解
感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...
- 使用Keil下载Hex文件进STM32
前言 初学STM32时,是通过串口1把Hex文件下载进STM32的,需要一个串口模块,而且还要设置BOOT0和BOOT1电平,然后通过FlyMcu软件进行下载,这也是一种不错的方法,这里我要介绍的是使 ...
- Balance的数学思想构造辅助函数
本类题的证明难点便在于如何构造出满足答案的辅助函数.通过下列类题便可以很好的理解. 题一 该类题可以理解为积分内部f(x)与xf(x)处于一种失衡状态,故我们需要使其平衡,否则直接构造出的函数无法满足 ...
- 摘录:ddr3内存条时序概念
本文摘自:内存系列二:深入理解硬件原理 - 知乎 (zhihu.com),感谢作者! 上次虽然解决了小张的问题,却引发了他对内存原理的兴趣.这不他又来找我了,说我还欠他一个解释.这次我们约在一个咖啡馆 ...
- Nginx多种安装方式
不指定参数配置的Nginx编译安装 ./configuremake make install wget下载或浏览器下载上传.解压进入目录[root@mcw1 nginx-1.10.2]# ls #查看 ...
- 创建双向 CA x509 验证证书 kube-apiserver
1. 设置 kube-apiserver 的 CA 证书相关的文件和启动参数 使用 OpenSSL 工具在 Master 服务器上创建 CA 证书和私钥相关的文件: # openssl genrsa ...