题意:

Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot of samll squares. Water pipes are placed in these squares. Different square has a different type of pipe. There are 11 types of pipes, which is marked from A to K, as Figure 1 shows.

Benny has a map of his farm, which is an array of marks denoting the distribution of water pipes over the whole farm. For example, if he has a map 

ADC
FJK
IHE

then the water pipes are distributed like

Several wellsprings are found in the center of some squares, so water can flow along the pipes from one square to another. If water flow crosses one square, the whole farm land in this square is irrigated and will have a good harvest in autumn. 
Now Benny wants to know at least how many wellsprings should be found to have the whole farm land irrigated. Can you help him?

There are several test cases! In each test case, the first line contains 2 integers M and N, then M lines follow. In each of these lines, there are N characters, in the range of 'A' to 'K', denoting the type of water pipe over the corresponding square. A negative M or N denotes the end of input, else you can assume 1 <= M, N <= 50.

思路:

并查集,看代码。

代码:

struct node{
bool up,down,left,right;
}
a[2505]; int m,n;
char graph[55][55];
int fa[2505]; int findFa(int x){
return fa[x]==x?fa[x]:fa[x]=findFa(fa[x]);
} void Union(int x,int y){
int fx=findFa(x);
int fy=findFa(y);
if(fx!=fy){
fa[fx]=fy;
}
} int main(){ while(scanf("%d%d",&m,&n),m>0||n>0){
rep(i,0,m-1) scanf("%s",graph[i]); rep(i,1,m*n) a[i].up=a[i].down=a[i].left=a[i].right=false; rep(i,0,m-1){
rep(j,0,n-1){
switch(graph[i][j]){
case 'A':a[i*n+j+1].up=true; a[i*n+j+1].left=true; break;
case 'B':a[i*n+j+1].up=true; a[i*n+j+1].right=true; break;
case 'C':a[i*n+j+1].left=true; a[i*n+j+1].down=true; break;
case 'D':a[i*n+j+1].right=true; a[i*n+j+1].down=true; break;
case 'E':a[i*n+j+1].up=true; a[i*n+j+1].down=true; break;
case 'F':a[i*n+j+1].left=true; a[i*n+j+1].right=true; break;
case 'G':a[i*n+j+1].left=true; a[i*n+j+1].right=true; a[i*n+j+1].up=true; break;
case 'H':a[i*n+j+1].up=true; a[i*n+j+1].down=true; a[i*n+j+1].left=true; break;
case 'I':a[i*n+j+1].right=true; a[i*n+j+1].left=true; a[i*n+j+1].down=true; break;
case 'J':a[i*n+j+1].up=true; a[i*n+j+1].down=true; a[i*n+j+1].right=true; break;
case 'K':a[i*n+j+1].up=true; a[i*n+j+1].left=true; a[i*n+j+1].down=true; a[i*n+j+1].right=true; break;
default: break;
}
}
} rep(i,1,m*n) fa[i]=i;
rep(i,1,m){
rep(j,1,n){
int now=(i-1)*n+j;
if(j!=1){
int last1=(i-1)*n+j-1;
if(a[last1].right && a[now].left){
Union(last1,now);
}
}
if(i!=1){
int last2=(i-2)*n+j;
if(a[last2].down && a[now].up){
Union(last2,now);
}
}
}
} map<int,int> mp;
mp.clear();
int ans=0;
rep(i,1,m*n){
int t=findFa(i);
if(mp[t]==0){
++ans;
mp[t]=1;
}
} printf("%d\n",ans); } return 0;
}

hdu 1198 Farm Irrigation(并查集)的更多相关文章

  1. 杭电OJ——1198 Farm Irrigation (并查集)

    畅通工程 Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可 ...

  2. hdu 1198 Farm Irrigation(深搜dfs || 并查集)

    转载请注明出处:viewmode=contents">http://blog.csdn.net/u012860063?viewmode=contents 题目链接:http://acm ...

  3. HDU 1198 Farm Irrigation(并查集,自己构造连通条件或者dfs)

    Farm Irrigation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  4. HDU 1198 Farm Irrigation(并查集+位运算)

    Farm Irrigation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Tot ...

  5. HDU 1198 Farm Irrigation(状态压缩+DFS)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1198 题目: Farm Irrigation Time Limit: 2000/1000 MS (Ja ...

  6. HDU 1198 Farm Irrigation (并检查集合 和 dfs两种实现)

    Farm Irrigation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. hdu1198 Farm Irrigation 并查集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1198 简单并查集 分别合并竖直方向和水平方向即可 代码: #include<iostream&g ...

  8. hdu.1198.Farm Irrigation(dfs +放大建图)

    Farm Irrigation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1198 Farm Irrigation

    令人蛋疼的并查集…… 我居然做了大量的枚举,居然过了,我越来越佩服自己了 这个题有些像一个叫做“水管工”的游戏.给你一个m*n的图,每个单位可以有11种选择,然后相邻两个图只有都和对方连接,才判断他们 ...

随机推荐

  1. HDU1166敌兵布阵(线段树单点更新)

    线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点.       对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b ...

  2. php curl发送数据和文件

    function mycurl($file, $url, $aid) { // 如果文件名是中文名,将中文字符编码转换一下 $file=iconv("UTF-8","gb ...

  3. 带你掌握Vue过滤器filters及时间戳转换

    摘要:Vue的filters过滤器是比较常见的一个知识点,下面我将结合时间戳转换的例子带你快速了解filters的用法. 本文分享自华为云社区<三分钟掌握Vue过滤器filters及时间戳转换& ...

  4. Docker系列(15)- Commit镜像

    docker commit 提交容器成为一个新的副本,有点像套娃 # 命令和git原理类似 docker commit -m="提交的描述信息" -a="作者" ...

  5. http报文常见的请求头、响应头

    http报文常见的请求头 1.Accept Accept: text/html  浏览器可以接受服务器回发的类型为 text/html. Accept: /   代表浏览器可以处理所有类型,(一般浏览 ...

  6. struts2 中 form-action action-form 的传参方式

    1.  struts2 Action获取表单提交数据 主要有三种方式: 1.1 使用ActionContext类 //获取actionContext对象 ActionContext context = ...

  7. 封装excel导出方法

    封装读取excel内容方法 /** * 获取Excel内容 * @param type $filename * @return type */ public function getExcelCont ...

  8. adb devices如何连逍遥模拟器的设备

    adb device连接真机,上一篇已经讲过了,这篇讲如何连接模拟器.这里我用的模拟器逍遥模拟器.我先插上手机,另外启动了一个模拟器,直接在cmd中输入adb devices,按理应该有2个设备id, ...

  9. P6122-[NEERC2016]Mole Tunnels【模拟费用流】

    正题 题目链接:https://www.luogu.com.cn/problem/P6122 题目大意 给出\(n\)个点的一棵满二叉树,每个点有容量\(c_i\),\(m\)次从\(p_i\)处加一 ...

  10. C语言数组的创建和使用

    C语言数组的创建和使用 数组是一组相同类型元素的集合. 一维数组的创建及初始化 //创建int类型的数组 //直接创建:不对数组进行初始化 int arr1[10]; //最常用.好用的创建方式 in ...