算法leetcode_分治算法
一、基本概念
在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
四、分治法的基本步骤
分治法在每一层递归上都有三个步骤:
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P):
if |P|≤n0
then return(ADHOC(P))
将P分解为较小的子问题 P1 ,P2 ,...,Pk
for i←1 to k
do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
T ← MERGE(y1,y2,...,yk) △ 合并子问题
return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
五、分治法的复杂性分析
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有: 1 T(n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当 mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。
六、可使用分治法求解的一些经典问题
(1)二分搜索 (2)大整数乘法 (3)Strassen矩阵乘法 (4)棋盘覆盖 (5)合并排序 (6)快速排序 (7)线性时间选择
(8)最接近点对问题 (9)循环赛日程表 (10)汉诺塔
七、依据分治法设计程序时的思维过程
实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法 2、然后考虑随着问题规模增大时的求解方法 3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
算法leetcode_分治算法的更多相关文章
- 从两个平方算法到分治算法-java
先来看看问题的来源,假设有这么一个数组: 1 2 -5 4 -2 3 -3 4 -15 我们要求出其中连续字数组的和的最大值 例如这么可以很明显看出 4+ –2 + 3 + –3 + 4 = 6 所有 ...
- 算法准备-分治算法解决第k位数的线性查找
由作业士兵排队问题引出的 在一个划分成网格的操场上,n个士兵散乱地站在网格点上.网格点由整数最表(x,y)表示.士兵可以沿着网格边上.下.左.右移动一步,但在同一时刻一个网格上只能有一名士兵.按照军官 ...
- 编程思想与算法leetcode_二分算法详解
二分算法通常用于有序序列中查找元素: 有序序列中是否存在满足某条件的元素: 有序序列中第一个满足某条件的元素的位置: 有序序列中最后一个满足某条件的元素的位置. 思路很简单,细节是魔鬼. 二分查找 一 ...
- NOI题库分治算法刷题记录
今天晚自习机房刷题,有一道题最终WA掉两组,极其不爽,晚上回家补完作业欣然搞定它,特意来写篇博文来记录下 (最想吐槽的是这个叫做分治的分类,里面的题目真的需要分治吗...) 先来说下分治法 分治法的设 ...
- 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...
- [算法]分治算法(Divide and Conquer)
转载请注明:http://www.cnblogs.com/StartoverX/p/4575744.html 分治算法 在计算机科学中,分治法是建基于多项分支递归的一种很重要的算法范式.字面上的解释是 ...
- 分治算法求乘方a^b 取余p(divide and conquer)
传统的计算方法为循环n个a相乘.时间复杂度为O(n). 如用分治算法,效率可提升至O(lgn). 结合recursive有 double pow(int a, int n){ ) ; ) return ...
- UVA 10245 The Closest Pair Problem 最近点问题 分治算法
题意,给出n个点的坐标,找出两点间最近的距离,如果小于10000就输出INFINITY. 纯暴力是会超时的,所以得另辟蹊径,用分治算法. 递归思路将点按坐标排序后,分成两块处理,最近的距离不是在两块中 ...
- 分治算法(Divide-and-Conquer)和Google的云计算
1.云计算:涉及到存储.计算.资源的调度和权限的管理等 2.分治算法的原理: 讲一个复杂的问题,分成若干个简单的子问题进行解决,然后对子问题的记过进行合并,得到原有问题的解 ...
随机推荐
- ARM Cortex-M嵌入式C基础编程(下)
ARM Cortex-M嵌入式C基础编程(下) ARM Cortex-M Embedded C Fundamentals/Tutorial -Aviral Mittal Load Region Vs ...
- 用Redis实现签到功能
一.场景 在很多时候我们会遇到用户签到的场景,每天用户进入应用时,需要获取用户当天的签到状态,如果没签到,用户可以进行签到,并且得到相关的奖励.我们可能需要每天的签到情况,必要的时候可能还需要统计一下 ...
- LeetCode 每日一题「判定字符是否唯一」
我是陈皮,一个在互联网 Coding 的 ITer,微信搜索「陈皮的JavaLib」第一时间阅读最新文章,回复[资料],即可获得我精心整理的技术资料,电子书籍,一线大厂面试资料和优秀简历模板. 题目 ...
- SpringCloud Alibaba实战(5:子模块基本业务开发)
源码地址:https://gitee.com/fighter3/eshop-project.git 持续更新中-- 在上一节里,我们搭建了一个微服务项目的整体架构,并进行了版本控制. 接下来我们进一步 ...
- (5)使用自定Web根目录
调整 Web 站点 http://server0.example.com 的网页目录,要求如下: 1) 新建目录 /webroot,作为此站点新的网页文件根目录 # mkdir /webroot # ...
- WordPress安装篇(4):YUM方式安装LNMP并部署WordPress
YUM方式安装软件的优点就是简单.方便.快捷,本文介绍在Linux上如何使用YUM方式快速安装LNMP并部署WordPress.使用Linux CentOS 7.9 + Nginx 1.18 + My ...
- 【NX二次开发】Block UI 线性尺寸
属性说明 常规 类型 描述 BlockID String 控件ID Enable Logical 是否可操作 Group Logical ...
- (鸡汤文)这一次我终于搞懂了 JavaScript 定时器的 this 指向!
开篇语 忽然有一种感觉,每次学习一个知识点就像是谈一场恋爱:从初次邂逅,到彼此了解,一切都那么的符合恋爱的过程! 如果这个知识点再有点"调皮"的话,那简直是让人欲仙欲死而又不可自拔 ...
- Spring Boot WebFlux-07——WebFlux 中 Redis 实现缓存
第07课:WebFlux 中 Redis 实现缓存 前言 首先,补充下上一篇的内容,RedisTemplate 实现操作 Redis,但操作是同步的,不是 Reactive 的.自然,支持 React ...
- Redundant Paths 分离的路径
Redundant Paths 分离的路径 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她 ...