Signals, Systems and Inference, Chapter 11: Wiener Filtering (mit.edu)

基本

在图像处理的时候, 遇到了这个维纳滤波, 其推导的公式不是很理解, 于是上网查了查, 并做个简单的总结.

符号 说明
\(x[k]]\) 观测信号\(x\)的第k个元素
\(\hat{y}\) 为\(y\)的一个估计
\(v\) 噪声信号
\(e[k]\) 误差, 为\(e[k]=\hat{y}[k] - y[k]\)
\(R_{xy}(i, j)\) 相关系数: \(E\{x[n-i]y[n-j]\}\)
\(S_{xy}\) 傅里叶变换: \(\mathcal{F} \{R_{xy}\}\)

基本的假设:

\(y[k]\)服从wide-sense stationary (WSS), 即

  1. \(E[y[k]] = E[y[0]]\);
  2. \(R_{yy}(i, j) = R_{yy}[j-i]\).

维纳滤波可以应用于很多场景, 但是这里只讨论下面的去噪的情形:

\[x[n] = y[n] + v[n],
\]

且假设\(y, v\)之间相互独立, \(E[v]=0\).

我们的目标是找到一个滤波\(h\), 得到一个估计

\[\hat{y}[n] = h\star x [n],
\]

使得下式最小

\[E[e^2[n]].
\]

维纳滤波需要分情况讨论, 这里只关注离散的情形, 包括

  1. non-causal: \(\hat{y}[n] = \sum_{k=-\infty}^{+\infty} h[k]y[n-k]\);
  2. FIR: \(\hat{y}[n] = \sum_{k=0}^{N-1} h[k]y[n-k]\).

causal的情况这里就不写了.

滤波的推导

自然地, 寻找驻点:

\[\begin{array}{ll}
\frac{\partial E[e^2[n]]}{\partial h[m]}
&=2E[e[n]\frac{\partial e[n]}{\partial h[m]}] \\
&=2E[e[n]x[n-m]] \\
&=2(h\star R_{xx}[m] -R_{yx}[m]) \\
&=0.
\end{array}
\]

于是必须满足

\[\tag{1}
h \star R_{xx}[m] = R_{yx}[m].
\]

相应的在频率域内存在(假设DFT存在, 参考文献用的z变换, 这个不是特别了解):

\[\tag{2}
H[u] S_{xx}[u] = S_{yx}[u].
\]

在FIR情况下, 可以通过(1)推导出一个线性方程组从而求解, non-causal下可用(2)推导出结果.

注: \(H[u]\)用了[]是为了保持一致, 在non-causal情况下\(H(z)\)可能更加妥当.

故最优解为:

\[\tag{*}
H = S_{yx} / S_{xx}.
\]

特别的情况

进一步, 由于

\[S_{xx}
= \mathcal{F}\{R_{xx}\}
= \mathcal{F}\{E[(y[n]+v[n])(y[n-m]+v[n-m])]\}
=S_{yy} + S_{vv},
\]

最后一步成立的原因是\(E{v}=0\), 且\(v, y\)相互独立.

同时

\[S_{yy} = S_{yx}.
\]

所以:

\[\tag{3}
H = \frac{S_{yy}}{S_{yy} + S_{vv}}.
\]

特别的例子

在图像数字处理中, 给出的这样的情形(FIR):

\[x[n] = g \star y [n] + v[n],
\]

记\(r[n] = g \star y [n]\),

\[\begin{aligned}
S_{rr}[u]
&= \mathcal{F}\{R_{rr}[m]\}[u] \\
&= \mathcal{F}\{E[r[n] r[n-m]]\}[u] \\
&= E[r[n] \mathcal{F}\{r[n-m]\}][u] \\
&= E[r[n] G[-u] Y[-u] e^{-j2\pi nu/N}] \\
&= G[-u] E[r[n]Y[-u] e^{-j2\pi nu/N}] \\
&= G[-u] \mathcal{F}\{R_{ry}[m]\}[u] \\
&= G[-u] \mathcal{F}\{E[r[n+m]y[n]]\}[u] \\
&= G[-u] E[\mathcal{F}\{r[n+m]\}[u]y[n]] \\
&= G[-u] E[G[u]Y[u]e^{-j2\pi nu/N}y[n]] \\
&= G[-u]G[u] \mathcal{F}\{R_{yy}[m]\}[u] \\
&= G[-u]G[u] S_{yy}[u]
\end{aligned}
\]

由于

\[S_{yx} = S_{yr} = G[-u]S_{yy}[u],
\]

证明和上面是类似的,

\[S_{xx} = S_{rr} + S_{vv},
\]

于是

\[H[u] = \frac{1}{G[u]}\frac{1}{1 + S_{vv}[u] / (G[-u]G[u]S_{yy}[u])}.
\]

当\(g\)为实的时候, 有\(G[-u]G[u]=|G[u]|^2\), 在数字图像处理书中, 给出的公式中:

\[S_{yy}[u] = |F[u]|^2, S_{vv}[u] = |V[u]|^2,
\]

个人觉得是这里的期望\(E\)用

\[R_{yy}[m] = \sum_{n=0}^{N-1} y[n]y[n-m],
\]

代替了,

所以

\[\mathcal{F}\{R_{yy}[m]\} = F^*(u)F(u) = |F(u)|^2,
\]

这里假设\(y[n] \in \mathbb{R}\).

\(S_{vv}[u]\)也是类似的.

Wiener Filtering的更多相关文章

  1. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  2. paper 132:图像去噪算法:NL-Means和BM3D

    这篇文章写的非常好,确定要~认真~慎重~的转载了,具体请关注本文编辑作者:http://wenhuix.github.io/research/denoise.html   我不会告诉你这里的代码都是f ...

  3. 【Duke-Image】Week_4 Image restoration

    Chapter 5 Image Restoration and Reconstruction 图像复原与重建 5.1 A Model of the Image Defradation/Restorat ...

  4. WSS Process On Causal LTI System

    Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base ...

  5. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  6. 图像去噪算法:NL-Means和BM3D

    图像去噪是非常基础也是非常必要的研究,去噪常常在更高级的图像处理之前进行,是图像处理的基础.可惜的是,目前去噪算法并没有很好的解决方案,实际应用中,更多的是在效果和运算复杂度之间求得一个平衡,再一次验 ...

  7. paper 15 :整理的CV代码合集

    这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下 ...

  8. Analysis of Two-Channel Generalized Sidelobe Canceller (GSC) With Post-Filtering

    作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/12071748.html 题目:带后置滤波的双通道广义旁瓣相消器(GSC)的分析 作者:Israel Co ...

  9. 论文翻译:Speech Enhancement Based on the General Transfer Function GSC and Postfiltering

    论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应 ...

随机推荐

  1. ubuntu18.10搜狗输入法的安装

    记录一下 1.卸载ibus ubuntu默认使用ibus管理输入法,官方推荐使用fcitx.我们先卸载ibus sudo apt-get remove ibus 清除ibus配置,如果没有设置 sud ...

  2. 学习Vue源码前的几项必要储备(一)

    从接下来的一段时间里,Mg要进行阅读源码的工作.再阅读源码前,梳理一下准备工作. 7项重要储备 Flow 基本语法 发布/订阅模式 ES6+ 语法 原型链.闭包 函数柯里化 event loop 1. ...

  3. 三维引擎导入obj模型全黑总结

    最近有客户试用我们的三维平台,在导入模型的时候,会出现模型全黑和不可见的情况.本文说下全黑的情况. 经过测试,发现可能有如下几种情况. obj 模型没有法线向量 如果obj模型导出的时候没有导出法线向 ...

  4. STM32一些特殊引脚做IO使用的注意事项

    1 PC13.PC14.PC15的使用 这三个引脚与RTC复用,<STM32参考手册>中这样描述: PC13 PC14 PC15需要将VBAT与VDD连接,实测采用以下程序驱动4个74HC ...

  5. Android 百度地图用法

    一.展示百度地图,并将一个指定的点(根据经纬度确定)展示在手机屏幕中心 1.下载百度地图移动版API(Android)开发包 要在Android应用中使用百度地图API,就要在工程中引入百度地图API ...

  6. PhoneGap打包webApp

    因为我只弄了Andriod的环境,所以在此只以Andriod为例. 使用PhoneGap搭建Android开发的项目整体步骤如下: 安装java环境. 安装ant构建工具. 安装android的开发环 ...

  7. zabbix实现对主机和Tomcat监控

    #:在tomcat服务器安装agent root@ubuntu:~# apt install zabbix-agent #:修改配置文件 root@ubuntu:~# vim /etc/zabbix/ ...

  8. 【编程思想】【设计模式】【行为模式Behavioral】Publish_Subscribe

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/publish_subscribe.py #!/usr/b ...

  9. MySQL 用户权限相关命令

    ##1.创建用户: create user test identified by '123456';##identified后面跟密码 ##2.查询所有用户: select user from mys ...

  10. 什么是git?

    目录 一.简介 Git与SVN 区别 一.简介 Git 是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git 是 Linus Torvalds 为了帮助管理 Linux 内核 ...