Tomczak J. & Welling M. VAE with a VampPrior. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

这篇文章提出了一种新的"多模态"的先验.

主要内容

首先根据这里的推导可知,

\[\begin{array}{ll}
\mathcal{L}(\phi, \theta, \lambda)
=& \mathbb{E}_{q(x)} [\mathbb{E}_{q_{\phi}(z|x)}\log p_{\theta}(x|z)] \\
&+ \mathbb{E}_{x \sim q(x)}[\mathbb{H}[q_{\phi}(z|x)]] \\
&- \mathbb{E}_{z \sim q(z)}[-\log p_{\lambda}(z)].
\end{array}
\]

其中, \(q(z) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n).\)

因为只有最后一项(交叉熵)和先验分布有关系, 可见, 最优的先验分布\(p_{\lambda}\)就是

\[q(z) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n).
\]

但是这样的先验分布每一次计算量太大, 所以作者退而求其次, 假设

\[p_{\lambda}(z) = \frac{1}{K} \sum_{k=1}^K q_{\phi}(z|\mu_k),
\]

其中\(\mu_k\)是可训练的参数.

分级的VAE

一般的VAE的隐变量往往只有少部分是激活的有效的, 而且这一点越在deep的网络中越容易出现.

所以作者提出了如上图(b)的一种双层的改进方式.

具体的, variational part:

\[q_{\phi}(z_1|x, z_2)q_{\psi}(z_2|x),
\]

generative part:

\[p_{\theta}(x|z_1, z_2) p_{\lambda}(z_1|z_2)p(z_2).
\]

其中:

感觉有点残差的味道.

代码

原文代码

VAE with a VampPrior的更多相关文章

  1. (转) 变分自编码器(Variational Autoencoder, VAE)通俗教程

    变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c ...

  2. pytorch实现VAE

    一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argp ...

  3. 变分自编码器(Variational Autoencoder, VAE)通俗教程

    原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定 ...

  4. 生成器的认识及其思考:VAE, GAN, Flow-based Invertible Model

    生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当 ...

  5. VAE (variational autoencoder)

    https://www.zhihu.com/question/41490383/answer/103006793 自编码是一种表示学习的技术,是deep learning的核心问题 让输入等于输出,取 ...

  6. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  7. 编码器AE & VAE

    学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)             ...

  8. 深度学习课程笔记(九)VAE 相关推导和应用

    深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/ ...

  9. 使用VAE、CNN encoder+孤立森林检测ssl加密异常流的初探——真是一个忧伤的故事!!!

    ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from ...

随机推荐

  1. 日常Javaweb 2021/11/19

    Javaweb Dao层: //连接数据库,实现增查功能 package dao; import java.sql.Connection; import java.sql.DriverManager; ...

  2. 为构建大型复杂系统而生的微服务框架 Erda Infra

    作者|宋瑞国(尘醉) 来源|尔达 Erda 公众号 ​ 导读:Erda Infra 微服务框架是从 Erda 项目演进而来,并且完全开源.Erda 基于 Erda Infra 框架完成了大型复杂项目的 ...

  3. windows下的_vimrc

    折腾了一天 在https://keelii.github.io/2016/06/13/awsome-window-vimrc/的基础上进行了一些改动 " ------------------ ...

  4. 【Linux】【Services】【Package】Basic

    Linux程序包管理           概述         API:Application Program Interface         ABI:Application Binary Int ...

  5. HTTP协议及常见状态码

    超文本传输协议(HTTP)是用于传输诸如HTML的超媒体文档的应用层协议.它被设计用于Web浏览器和Web服务器之间的通信,但它也可以用于其他目的. HTTP遵循经典的客户端-服务端模型,客户端打开一 ...

  6. Maven配置大全

    maven项目打jar包(带依赖) <build> <plugins> <plugin> <artifactId>maven-assembly-plug ...

  7. 修改页面.JSP

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><%@tag ...

  8. scanf("%c\n",&a)和scanf("%c",&a)区别

    scanf("%c",&a); 当输入字符的时候,我们按下任意字符 + 回车的时候,回车没有被当作为分隔符,而是作为一个转义字符与输入的字符一起保存在缓存区.第一次scan ...

  9. JDK各版本新增的主要特性总结

    JDK1.5新特性: 1.自动装箱与拆箱: 2.枚举 3.静态导入,如:import staticjava.lang.System.out 4.可变参数(Varargs) 5.内省(Introspec ...

  10. jenkins实例 nodejs项目

    目录 一.案例1 二.案例2 一.案例1 使用shell方式 #清理上一次版本,拉取新代码 rm -rf /server/admin-web cd /server git clone http://g ...