Tomczak J. & Welling M. VAE with a VampPrior. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

这篇文章提出了一种新的"多模态"的先验.

主要内容

首先根据这里的推导可知,

\[\begin{array}{ll}
\mathcal{L}(\phi, \theta, \lambda)
=& \mathbb{E}_{q(x)} [\mathbb{E}_{q_{\phi}(z|x)}\log p_{\theta}(x|z)] \\
&+ \mathbb{E}_{x \sim q(x)}[\mathbb{H}[q_{\phi}(z|x)]] \\
&- \mathbb{E}_{z \sim q(z)}[-\log p_{\lambda}(z)].
\end{array}
\]

其中, \(q(z) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n).\)

因为只有最后一项(交叉熵)和先验分布有关系, 可见, 最优的先验分布\(p_{\lambda}\)就是

\[q(z) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n).
\]

但是这样的先验分布每一次计算量太大, 所以作者退而求其次, 假设

\[p_{\lambda}(z) = \frac{1}{K} \sum_{k=1}^K q_{\phi}(z|\mu_k),
\]

其中\(\mu_k\)是可训练的参数.

分级的VAE

一般的VAE的隐变量往往只有少部分是激活的有效的, 而且这一点越在deep的网络中越容易出现.

所以作者提出了如上图(b)的一种双层的改进方式.

具体的, variational part:

\[q_{\phi}(z_1|x, z_2)q_{\psi}(z_2|x),
\]

generative part:

\[p_{\theta}(x|z_1, z_2) p_{\lambda}(z_1|z_2)p(z_2).
\]

其中:

感觉有点残差的味道.

代码

原文代码

VAE with a VampPrior的更多相关文章

  1. (转) 变分自编码器(Variational Autoencoder, VAE)通俗教程

    变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c ...

  2. pytorch实现VAE

    一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argp ...

  3. 变分自编码器(Variational Autoencoder, VAE)通俗教程

    原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定 ...

  4. 生成器的认识及其思考:VAE, GAN, Flow-based Invertible Model

    生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当 ...

  5. VAE (variational autoencoder)

    https://www.zhihu.com/question/41490383/answer/103006793 自编码是一种表示学习的技术,是deep learning的核心问题 让输入等于输出,取 ...

  6. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  7. 编码器AE & VAE

    学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)             ...

  8. 深度学习课程笔记(九)VAE 相关推导和应用

    深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/ ...

  9. 使用VAE、CNN encoder+孤立森林检测ssl加密异常流的初探——真是一个忧伤的故事!!!

    ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from ...

随机推荐

  1. Azure Key Vault(二)- 入门简介

    一,引言 在介绍 Azure Key Vault 之前,先简单介绍一下 HSM(硬件安全模块). -------------------- 我是分割线 -------------------- 1,什 ...

  2. Java偏向锁浅析

    偏向锁的定义 顾名思义,偏向锁会偏向第一个访问锁的线程. 如果在接下来的运行过程中,该锁没有被其他线程访问,这持有偏向锁的线程将永远不需要同步 如果在运行过程中,遇到了其他线程抢占锁,则持有偏向锁的线 ...

  3. Linux学习 - 系统定时任务

    1 crond服务管理与访问控制 只有打开crond服务打开才能进行系统定时任务 service crond restart chkconfig crond on 2 定时任务编辑 crontab [ ...

  4. Oracle中IS TABLE OF的使用

    IS TABLE OF :指定是一个集合的表的数组类型,简单的来说就是一个可以存储一列多行的数据类型. INDEX BY BINARY_INTEGER:指索引组织类型 BULK COLLECT :指是 ...

  5. Pythonweb采集

    一.访问页面 import webbrowser webbrowser.open('http://www.baidu.com/')    pip3 install requests import re ...

  6. GIS应用|快速开发在线路径导航应用

    导航应用可用于路径规划及仿真,并且常作为一个重要模块融入到各类企业管理业务中,如面向物流管理.商品配送.车辆监控等场景,那么如何开发一个简单的在线路径导航应用呢?SuperMap Online为您解答 ...

  7. 【密码学】CBC反转字节攻击

    前言 暑假刷安全牛的课,看视频有点够了,想做点题,选择了实验吧,结果上来就整懵了 web题,牵扯到了CBC反转字节攻击,密码学!? 查阅资料,学习一下 CBC加解密 CBC 模式中会先将明文分组与前一 ...

  8. tomcat架构分析及配置详解

    浏览器访问服务器的流程 请求发起的过程: 注意:浏览器访问服务器使用的是http协议,http是应用层协议,而具体传输还是使用的TCP/IP协议 Tomcat系统总架构 2.1 Tomcat请求处理过 ...

  9. 1、学习算法和刷题的框架思维——Go版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

  10. CF253A Boys and Girls 题解

    Content 有 \(n\) 个男生.\(m\) 个女生坐在一排,请求出这样一种方案,使得相邻两个座位之间的人的性别不同的次数最多. 数据范围:\(1\leqslant n,m\leqslant 1 ...