正题

题目链接:https://www.luogu.com.cn/problem/P4491


题目大意

给\(n\)个物品染上\(m\)种颜色,若恰好有\(k\)个颜色的物品个数为\(S\)那么就会产生\(W_k\)的贡献。求所有染色方案的贡献和

\(1\leq n\leq 10^7,1\leq m\leq 10^5,1\leq S\leq 150\)


解题思路

先考虑一个简单的想法,我们强制染上\(k\)种颜色,那么方案就是

\[F(k)=\binom{m}{k}\frac{P_n^{k\times S}}{(S!)^k}(m-k)^{n-k\times S}
\]

(选出\(k\)种,然后重排公式,剩下的随便选)

发现这样剩下的颜色也有可能会有贡献,设\(G(k)\)表示恰好有\(k\)种出现次数为\(S\)的颜色的话,那么他们之间有公式

\[F(k)=\sum_{i=k}^n\binom{i}{k}G(i)
\]

然后直接二项式反演就有

\[\Rightarrow G(k)=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}F(i)
\]

拆开组合数就有

\[G(k)=\sum_{i=k}^n(-1)^{i-k}\frac{i!}{k!(i-k)!}F(i)
\]

这里面和\(i\)有关的下标只有\(i\)和\(i-k\),是一个卷积的形式,直接\(NTT\)就好了。

时间复杂度\(O(n\log n)\)

当然也可以用指数型生成函数来推导,但是我不会


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e7+10,P=1004535809;
ll n,m,S,ans,inv[N],fac[N],f[N],g[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=(p>>1),tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&S);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=fac[0]=1;ll pm=m;m=min(m,n/S);
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=0,z=1;i<=m;i++){
f[i]=C(pm,i)*fac[n]%P*z%P*inv[n-i*S]%P;
f[i]=f[i]*power(pm-i,n-i*S)%P;z=z*inv[S]%P;
f[i]=f[i]*fac[i]%P;
}
for(ll i=0;i<=m;i++)g[i]=(i&1)?(P-inv[i]):(inv[i]);
reverse(f,f+1+m);
ll l=1;while(l<=2*m+1)l<<=1;
for(ll i=0;i<l;i++)r[i]=(r[i>>1]>>1)|((i&1)?(l>>1):0);
NTT(f,l,1);NTT(g,l,1);
for(ll i=0;i<l;i++)f[i]=f[i]*g[i]%P;
NTT(f,l,-1);reverse(f,f+1+m);
for(ll i=0;i<=m;i++){
ll p=f[i]*inv[i]%P;
ll w;scanf("%lld",&w);
(ans+=w*p%P)%=P;
}
printf("%lld\n",ans);
return 0;
}

P4491-[HAOI2018]染色【多项式,二项式反演】的更多相关文章

  1. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  2. P4491 [HAOI2018]染色

    题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...

  3. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  4. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...

  5. luogu P4491 [HAOI2018]染色

    传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...

  6. 洛咕 P4491 [HAOI2018]染色

    显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...

  7. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  8. LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆

    传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...

  9. bzoj5093图的价值:多项式,斯特林数(二项式反演)

    Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为 ...

随机推荐

  1. git忽略文件夹提交以及gitignore修改后不生效的解决办法

    1.在 .gitgnore 文件加入需要忽略的问价夹正则表达式: 在配置完以后提交代码,你可能会发现git忽略配置不生效! 解决办法,将缓存的文件重新添加一下即可 2.打开命令行,将下面三个命令复制粘 ...

  2. Vue 插槽 slot的简单实用

  3. C++类构造函数、拷贝构造函数、复制构造函数、复制构造函数、构造函数显示调用和隐式调用

    一. 构造函数是干什么的   class Counter   {   public:            // 类Counter的构造函数            // 特点:以类名作为函数名,无返回 ...

  4. 【OpenLayers】入门教程地址

    [OpenLayers]入门教程地址:  点击进入   http://anzhihun.coding.me/ol3-primer/index.html 简书地址 :  http://www.jians ...

  5. -e $request_filename + nginx内置变量

    -e表示只要filename存在,则为真,不管filename是什么类型,当然这里加了!就取反额外的一些-e filename 如果 filename存在,则为真-d filename 如果 file ...

  6. mzy,struts学习(一)

    大家都在讲struts已经过时了,现在都是前后台分离,没有必要去学一个淘汰的框架,但是怎么讲呢?我觉得,struts能够流行那么多年,肯定有它的原因,肯定有很多优秀和好的地方,有一个指导过我的人给我讲 ...

  7. RHCS+Nginx及Fence机制实现高可用集群

    RHCS(Red Hat Cluster Suite,红帽集群套件)是Red Hat公司开发整合的一套综合集群软件组件,提供了集群系统中三种集群构架,分别是高可用性集群.负载均衡集群.存储集群,可以通 ...

  8. Python - 面向对象编程 - __str__()

    为什么要讲 __str__ 在 Python 中,直接 print 一个实例对象,默认是输出这个对象由哪个类创建的对象,以及在内存中的地址(十六进制表示) 假设在开发调试过程中,希望使用 print ...

  9. jq给动态标签绑定事件

    $(document).on("click", ".autocompleteDiv .autocomplete_ul li", function () { lo ...

  10. 使用Apache poi来编写导出excel的工具类

    在JavaWeb开发的需求中,我们会经常看到导出excel的功能需求,然后java并没有提供操作office文档的功能,这个时候我们就需要使用额外的组件来帮助我们完成这项功能了. 很高兴Apache基 ...