P4491-[HAOI2018]染色【多项式,二项式反演】
正题
题目链接:https://www.luogu.com.cn/problem/P4491
题目大意
给\(n\)个物品染上\(m\)种颜色,若恰好有\(k\)个颜色的物品个数为\(S\)那么就会产生\(W_k\)的贡献。求所有染色方案的贡献和
\(1\leq n\leq 10^7,1\leq m\leq 10^5,1\leq S\leq 150\)
解题思路
先考虑一个简单的想法,我们强制染上\(k\)种颜色,那么方案就是
\]
(选出\(k\)种,然后重排公式,剩下的随便选)
发现这样剩下的颜色也有可能会有贡献,设\(G(k)\)表示恰好有\(k\)种出现次数为\(S\)的颜色的话,那么他们之间有公式
\]
然后直接二项式反演就有
\]
拆开组合数就有
\]
这里面和\(i\)有关的下标只有\(i\)和\(i-k\),是一个卷积的形式,直接\(NTT\)就好了。
时间复杂度\(O(n\log n)\)
当然也可以用指数型生成函数来推导,但是我不会
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e7+10,P=1004535809;
ll n,m,S,ans,inv[N],fac[N],f[N],g[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=(p>>1),tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&S);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=fac[0]=1;ll pm=m;m=min(m,n/S);
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=0,z=1;i<=m;i++){
f[i]=C(pm,i)*fac[n]%P*z%P*inv[n-i*S]%P;
f[i]=f[i]*power(pm-i,n-i*S)%P;z=z*inv[S]%P;
f[i]=f[i]*fac[i]%P;
}
for(ll i=0;i<=m;i++)g[i]=(i&1)?(P-inv[i]):(inv[i]);
reverse(f,f+1+m);
ll l=1;while(l<=2*m+1)l<<=1;
for(ll i=0;i<l;i++)r[i]=(r[i>>1]>>1)|((i&1)?(l>>1):0);
NTT(f,l,1);NTT(g,l,1);
for(ll i=0;i<l;i++)f[i]=f[i]*g[i]%P;
NTT(f,l,-1);reverse(f,f+1+m);
for(ll i=0;i<=m;i++){
ll p=f[i]*inv[i]%P;
ll w;scanf("%lld",&w);
(ans+=w*p%P)%=P;
}
printf("%lld\n",ans);
return 0;
}
P4491-[HAOI2018]染色【多项式,二项式反演】的更多相关文章
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- P4491 [HAOI2018]染色
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...
- P4491 [HAOI2018]染色 容斥+NTT
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...
- P4491 [HAOI2018]染色 广义容斥 NTT 生成函数
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...
- luogu P4491 [HAOI2018]染色
传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...
- 洛咕 P4491 [HAOI2018]染色
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...
- bzoj5093图的价值:多项式,斯特林数(二项式反演)
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为 ...
随机推荐
- 【译】flutter中如何较好地实现隐藏和显示widget
通常情况下,显示有四种情况: 1.(visible)显示 2.(invisible)隐藏: 这种隐藏是指在屏幕中占据空间,只是没有显示.这种情况出现场景如:用带有背景色的Container Widge ...
- java线程池 面试题(精简)
什么是线程池? 线程池是一种多线程处理形式,处理过程中将任务提交到线程池,任务的执行交由线程池来管理. 如果每个请求都创建一个线程去处理,那么服务器的资源很快就会被耗尽,使用线程池可以减少创建和销毁线 ...
- 深入浅出Mybatis系列(三)---配置简介(mybatis源码篇)
上篇文章<深入浅出Mybatis系列(二)---Mybatis入门>写了一个Demo简单体现了一下Mybatis的流程.本次,将简单介绍一下Mybatis的配置文件: 上次例子中,我们以 ...
- 如何在指定的地址上创建C++对象
如果已经掌握在静态存储区上创建对象的方法,那么可以扩展一下,可以在任意地址上创建C++对象. 解决方案:-在类中重载new/delete操作符-在new的操作符重载函数中返回指定的地址-在delete ...
- BootStrap学习代码
要为毕设做准备了! 哎,毕设前台得自己来,所以打算学学bootstrap,把学习的代码放到码云上面了,使用HbuilderX来写,界面友好,适合我这种前端小白- 第一天就感受到了写html快捷键的强大 ...
- Hadoop分布式资源管理器Yarn、MR运行机制剖析
介绍YARN组件的功能及应用场景 1.ResourceManager(RM) RM是一个全局的资源管理器,集群中只有一个.它负责整个Hadoop系统的资源管理和分配,包括处理客户端请求.启动监控 Ap ...
- 解析ThreadPoolExecutor类是如何保证线程池正确运行的
摘要:对于线程池的核心类ThreadPoolExecutor来说,有哪些重要的属性和内部类为线程池的正确运行提供重要的保障呢? 本文分享自华为云社区<[高并发]通过源码深度解析ThreadPoo ...
- Ecplise项目导入IDEA(纯小白名词解释)
1. Module 模块 一个大的项目不仅仅是只有Java的源文件,还有数据库,服务器,web等等文件一起使用,将类似于这样分类的文件定义为 module 例如 core Module(核心).web ...
- Linux中MySQL的安装以及卸载
一.MySQL MySQL是一种开放源代码的关系型数据库管理系统,开发者为瑞典MySQL AB公司.在2008年1月16号被Sun公司收购.而2009年,SUN又被Oracle收购.目前 MySQL被 ...
- JSTL标签报错-http://java.sun.com/jsp/jstl/core
考虑为tomcat缺少相关的包 导入就好了 导入jstl-api-1.2.jar 以及standard-1.1.2.jar 然后重启服务 更多java学习,请进本人小博客-https://zhangj ...