P5934-[清华集训2012]最小生成树【最小割】
正题
题目链接:https://www.luogu.com.cn/problem/P5934
题目大意
给出\(n\)个点\(m\)条边的一张图,再加入一条边\((u,v,L)\)求至少删掉多少条边可以使得这条边即在最小生成树上又在最大生成树上。
\(1\leq n\leq 2\times 10^4,1\leq m\leq 2\times 10^5\)
解题思路
稍微思考一下就不难发现这两个问其实是没有影响的,因为第一个问显然只需要删去边权小于\(L\)的,第二个问显然只需要删去边权大于\(L\)的。所以考虑分开求然后相加
那么考虑怎么让它在最小生成树上。考虑我们之前\(\text{LCT}\)维护最小生成树的做法,我们加入一条边\((u,v,w)\)的时候,是找到\(u\sim v\)路径上的最大边然后和\(w\)比较。
那么如果原图中存在一条不经过这条边的路径且最大值比\(u,v\)要小。那么显然这条路径可以完全取代这条边,所以这条边一定不是最小生成树上的边。
那么同理我们只需要把所有边权小于\(L\)的边加入,然后再删去最少的边使得\(u,v\)不连通即可。这个用最小割解决就好了。
最大生成树同理
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=2e4+10,M=2e5+10,inf=1e9;
struct node{
int to,next,w;
}a[M<<1];
struct edge{
int x,y,w;
}e[M];
int n,m,s,t,L,tot=1,ls[N],dep[N],ans;
queue<int> q;
void addl(int x,int y,int w){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=w;
return;
}
bool bfs(){
while(!q.empty())q.pop();q.push(s);
memset(dep,0,sizeof(dep));dep[s]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(dep[y]||!a[i].w)continue;
dep[y]=dep[x]+1;
if(y==t)return 1;
q.push(y);
}
}
return 0;
}
int dinic(int x,int flow){
if(x==t)return flow;
int rest=0,k;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(dep[x]+1!=dep[y]||!a[i].w)continue;
rest+=(k=dinic(y,min(flow-rest,a[i].w)));
a[i].w-=k;a[i^1].w+=k;
if(rest==flow)return flow;
}
if(!rest)dep[x]=0;
return rest;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
scanf("%d%d%d",&s,&t,&L);
for(int i=1;i<=m;i++)
if(e[i].w<L)addl(e[i].x,e[i].y,1);
while(bfs())
ans+=dinic(s,inf);
memset(ls,0,sizeof(ls));tot=0;
for(int i=1;i<=m;i++)
if(e[i].w>L)addl(e[i].x,e[i].y,1);
while(bfs())
ans+=dinic(s,inf);
printf("%d\n",ans);
return 0;
}
P5934-[清华集训2012]最小生成树【最小割】的更多相关文章
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
- P2260 [清华集训2012]模积和 【整除分块】
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- BZOJ2521[Shoi2010]最小生成树——最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
随机推荐
- CNN卷积神经网络详解
前言 在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介 ...
- SpringCloud升级之路2020.0.x版-23.订制Spring Cloud LoadBalancer
本系列代码地址:https://github.com/HashZhang/spring-cloud-scaffold/tree/master/spring-cloud-iiford 我们使用 Spri ...
- WPF中实现动画的几种效果(最基础方式)
参考网址:https://blog.csdn.net/qq_45096273/article/details/106256397 在动画之前我们先了解一下几个声明式动画中常用的元素: 一.Storyb ...
- 菜鸟攻略–C语言多文件编程初探(二):使用 gcc 手动编译多文件 C 程序
step1:下载安装 Dev-C++ 已经安装了 Dev-C++ 或系统中的可以跳过这步.去官网下载 Dev-C++.我昨天下载,发现有点慢,所以我把安装文件放到百度网盘了,供大家下载,下载链接为:h ...
- SpringBoot集成<个推推送> Maven 下载jar包异常处理本地打包下载
问题描述 公司需要对用户进行消息推送,选择了个推,由于是Java进行开发,个推操作文档, 这是官网上安装的方式,可是不成功,无论怎么样都无法把Jar包下载下来! MAVEN方式(本人测试Jar无法下载 ...
- web整合Spring和Hibernate
上一篇是简单整合web和Spring, 这一篇是整合hibernate: 连接池c3p0: spring5.0, hibernate5.0 jars: ------------------------ ...
- mysql基础操作(二):简单查询DQL
-- 1.查询所有字段 select * from student; -- 2.查询指定的字段 select id from student; select id, name from student ...
- 微信小程序学习笔记五 常见组件
1. 常见组件 重点讲解小程序中常用的布局组件 1.1 view 代替 原来的div标签 <!-- pages/index/index.wxml --> <view hover-cl ...
- WPF路由事件
这节讲一下WPF中的路由事件(Routed Event). [什么是事件] 在了解路由事件前,我们应先来了解一下什么是事件(Event). 在Windows系统中,像鼠标单击,双击,移动这样 ...
- 战胜了所有对手,却输给了时代。MVVM--jQuery永远的痛。
前言 第二次浏览器战争中,随着以 Firefox 和 Opera 为首的 W3C 阵营与 IE 对抗程度的加剧,浏览器碎片化问题越来越严重,不同的浏览器执行不同的标准,对于开发人员来说这是一个恶梦.为 ...