P5934-[清华集训2012]最小生成树【最小割】
正题
题目链接:https://www.luogu.com.cn/problem/P5934
题目大意
给出\(n\)个点\(m\)条边的一张图,再加入一条边\((u,v,L)\)求至少删掉多少条边可以使得这条边即在最小生成树上又在最大生成树上。
\(1\leq n\leq 2\times 10^4,1\leq m\leq 2\times 10^5\)
解题思路
稍微思考一下就不难发现这两个问其实是没有影响的,因为第一个问显然只需要删去边权小于\(L\)的,第二个问显然只需要删去边权大于\(L\)的。所以考虑分开求然后相加
那么考虑怎么让它在最小生成树上。考虑我们之前\(\text{LCT}\)维护最小生成树的做法,我们加入一条边\((u,v,w)\)的时候,是找到\(u\sim v\)路径上的最大边然后和\(w\)比较。
那么如果原图中存在一条不经过这条边的路径且最大值比\(u,v\)要小。那么显然这条路径可以完全取代这条边,所以这条边一定不是最小生成树上的边。
那么同理我们只需要把所有边权小于\(L\)的边加入,然后再删去最少的边使得\(u,v\)不连通即可。这个用最小割解决就好了。
最大生成树同理
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=2e4+10,M=2e5+10,inf=1e9;
struct node{
int to,next,w;
}a[M<<1];
struct edge{
int x,y,w;
}e[M];
int n,m,s,t,L,tot=1,ls[N],dep[N],ans;
queue<int> q;
void addl(int x,int y,int w){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=w;
return;
}
bool bfs(){
while(!q.empty())q.pop();q.push(s);
memset(dep,0,sizeof(dep));dep[s]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(dep[y]||!a[i].w)continue;
dep[y]=dep[x]+1;
if(y==t)return 1;
q.push(y);
}
}
return 0;
}
int dinic(int x,int flow){
if(x==t)return flow;
int rest=0,k;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(dep[x]+1!=dep[y]||!a[i].w)continue;
rest+=(k=dinic(y,min(flow-rest,a[i].w)));
a[i].w-=k;a[i^1].w+=k;
if(rest==flow)return flow;
}
if(!rest)dep[x]=0;
return rest;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
scanf("%d%d%d",&s,&t,&L);
for(int i=1;i<=m;i++)
if(e[i].w<L)addl(e[i].x,e[i].y,1);
while(bfs())
ans+=dinic(s,inf);
memset(ls,0,sizeof(ls));tot=0;
for(int i=1;i<=m;i++)
if(e[i].w>L)addl(e[i].x,e[i].y,1);
while(bfs())
ans+=dinic(s,inf);
printf("%d\n",ans);
return 0;
}
P5934-[清华集训2012]最小生成树【最小割】的更多相关文章
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
- P2260 [清华集训2012]模积和 【整除分块】
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- BZOJ2521[Shoi2010]最小生成树——最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
随机推荐
- jpa中使用Query判断条件查询
jpa中使用Query判断条件查询 @Query(value = " select m.* from mining_area as m " + " where 1 = 1 ...
- flutter获取状态栏高度及安全区域
获取状态栏高度: final double statusBarHeight = MediaQuery.of(context).padding.top; 所谓安全区域,就是适配现在一些刘海屏之类的非常规 ...
- C# 插件编写
//加载插件 private void LoadPlugins() { string path = Path.Combine(Path.GetDirectoryName(Assembly.GetExe ...
- 【版本管理工具】git的介绍及常用命令总结
1 git简介 1.1 git是什么? "Git 是一个分布式版本控制软件,与CVS.Subversion一类的集中式版本控制工具不同,它采用了分布式版本库的作法,不需要服务器端软件,就可 ...
- 13.SpringMVC之全局异常
我们知道,系统中异常包括:编译时异常和运行时异常RuntimeException,前者通过捕获异常从而获取异常信息,后者主要通过规范代码开发.测试通过手段减少运行时异常的发生.在开发中,不管是dao层 ...
- PipedInputStream and PipedOutputStream example
必须要有PipedInputStream ,PipedOutputStream 在不同线程,不然死锁 Java.io.PipedOutputStream and java.io.PipedInputS ...
- xmake v2.5.7 发布,包依赖锁定和 Vala/Metal 语言编译支持
xmake 是一个基于 Lua 的轻量级跨平台构建工具,使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好,短时间内就能 ...
- Flink 保证ExactlyOnce
Flink 保证 ExactlyOnce 1.使用执行ExactlyOnce 的数据源,比如 kafka 2.使用FlinkConsumer,开启CheckPointing,偏移量会保存通过Check ...
- yum命令报错File "/usr/bin/yum", line 30 except KeyboardInterrupt, e:
使用yum命令报错File "/usr/bin/yum", line 30 except KeyboardInterrupt, e: 问题出现原因:yum包管理是使用python2 ...
- 登录用户出现‘’-bash-4.2$‘’的问题解决
Linux系统切换用户时如显示的是-bash-4.2# 而不是user@主机名 + 路径的显示方式,以往一直用的脚本也不能执行起来: 原因是在用useradd添加普通用户时,有时会丢失家目录下的环境变 ...